Jurnal Kimia dan Kemasan
Vol. 43 No. 1 April 2021

SYNTHESIS OF POLYANILINE MICROCELLULOSE COMPOSITE

Lela Mukmilah Yuningsih (Program Studi Kimia Universitas Muhammadiyah Sukabumi)
Dikdik Mulyadi (Program Studi Kimia Universitas Muhammadiyah Sukabumi)
Devia Indriani (Program Studi Kimia Universitas Muhammadiyah Sukabumi)



Article Info

Publish Date
09 Apr 2021

Abstract

In this study, the Polyaniline-Microcellulose composite was produced as a solid electrolyte. In the previous research, polyaniline-cellulose composite has been carried out. However, the electronegativity and electrical voltage are still below the conventional batteries. In order to increase its performance, a polyaniline-microcellulose composite was synthesized. The purpose of this research is to determine the effect of the Polyaniline-Microcellulose composite on its conductivity and voltage values. Microcellulose synthesis used a combination method of sulfuric acid hydrolysis with concentrations of  30%-64% and sonication. Polyaniline - Microcellulose composite was synthesized via polymerization of aniline using chemical oxidation and sonication. Microcellulose was characterized using particle size analyzer (PSA). Microcellulose and PANI-microcellulose composites were characterized using FTIR, SEM-EDX, and XRD. The conductivity values and electrical quantities of PANI-Microcellulose composite were measured using LCR-meter and Digital Multimeter, respectively. The diameter of the microcellulose particles were between 20 nm – 40,6 µm. Microcellulose and PANI-Microcellulose composites showed identical absorption bands, namely the stretching vibrations to-OH and CH (aliphatic), which were shown at wavelengths 3444.87 cm-1 and 2897.08 cm-1, two typical groups of cellulose. The typical groups of PANI are bending vibrations from N-H, stretching vibrations of C=C, C-N, and quinoid ring C=N at wavelengths 1566.20 cm-1, 1479.40 cm-1, 1300.02 cm-1, and 1141.86 cm-1. PANI-Microcellulose composite morphology showed that PANI had been dispersed on microcellulose and free from impurities. The degrees of crystallinity are 30.9343% for microcellulose and 14.6079% for PANI-microcellulose. The optimum conductivity value of PANI-microcellulose composite at a ratio of 1:10 is 0.036013 S/cm; the electrical voltage is 1.34 volts with an electric current of 83 mA.

Copyrights © 2021