Cybersecurity attacks are becoming increasingly sophisticated and increasing with the development of technology so that they present threats to both the private and public sectors, especially Denial of Service (DoS) attacks and their variants which are often known as Distributed Denial of Service (DDoS). One way to minimize this attack is by using traditional mitigation solutions such as human-assisted network traffic analysis techniques but experiencing some limitations and performance problems. To overcome these limitations, Machine Learning (ML) has become one of the main techniques to enrich, complement and enhance the traditional security experience. The way ML works are based on the process of data collection, training and output. ML is influenced by several factors, one of which is feature engineering. In this study, we focus on the literature review of several recent studies which show that the feature selection process greatly impacts the level of accuracy of this ML. Datasets such as KDD, UNSW-NB15 and others also affect the level of accuracy of ML. Based on this literature review, this study can observe several feature engineering strategies with relevant impacts that can be chosen to improve ML solutions on DDoS attacks.
Copyrights © 2022