Makara Journal of Technology
Vol. 17, No. 2

A New Experimental Approach to Evaluate Plasma-induced Damage in Microcantilever

Nishimori, Yuki (Unknown)
Ueki, Shinji (Unknown)
Sugiyama, Masakazu (Unknown)
Samukawa, Seiji (Unknown)
Hashiguchi, Gen (Unknown)



Article Info

Publish Date
02 Aug 2013

Abstract

Plasma etching, during micro-fabrication processing is indispensable for fabricating MEMS structures. During the plasma processes, two major matters, charged ions and vacuum–ultraviolet (VUV) irradiation damage, take charge of reliability degradation. The charged ions induce unwanted sidewall etching, generally called as “notching”, which causes degradation in brittle strength. Furthermore, the VUV irradiation gives rise to crystal defects on the etching surface. To overcome the problem, neutral beam etching (NBE), which use neutral particles without the VUV irradiation, has been developed. In order to evaluate the effect of the NBE quantitatively, we measured the resonance property of a micro-cantilever before and after NBE treatment. The thickness of damage layer (δ) times the imaginary part of the complex Young's modulus (Eds) were then compared, which is a parameter of surface damage. Although plasma processes make the initial surface of cantilevers damaged during their fabrication, the removal of that damage by NBE was confirmed as the reduction in δEds. NBE will realize a damage-free surface for microstructures.

Copyrights © 2013






Journal Info

Abbrev

publication:mjt

Publisher

Subject

Chemical Engineering, Chemistry & Bioengineering Civil Engineering, Building, Construction & Architecture Electrical & Electronics Engineering Engineering Materials Science & Nanotechnology Mechanical Engineering

Description

MAKARA Journal of Technology is a peer-reviewed multidisciplinary journal committed to the advancement of scholarly knowledge and research findings of the several branches of Engineering and Technology. The Journal publishes new results, original articles, reviews, and research notes whose content ...