eProceedings of Engineering
Vol 6, No 2 (2019): Agustus 2019

Klasifikasi Intensitas Angin Siklon Tropis Pada Citra Inframerah Satelit Menggunakan Metode Svm

Adam Agus Kurniawan (Telkom University)
Koredianto Usman (Telkom University)
R. Yunendah Nur Fuadah (Telkom University)



Article Info

Publish Date
01 Aug 2019

Abstract

Abstrak Dewasa ini, perubahan cuaca tidak dapat diprediksi karena adanya kejadian luar biasa akibat pemanasan global. Salah satu dampak perubahan iklim menyebabkan suburnya pertumbuhan angin siklon tropis di Bumi. Dalam mempermudah proses klasifikasi intensitas angin siklon tropis maka dibuatlah sebuah sistem yang berbasis machine learning. Algoritma yang digunakan dalam proses ekstraksi ciri adalah GLCM sedangkan pada proses klasifikasi adalah SVM. Pertama-tama, proses pengenalan citra inframerah dilakukan dengan mengekstraksi 14 fitur GLCM di ruang warna RGB, Ycbcr dan Grayscale. Selanjutnya, dilakukan proses kombinasi masing-masing sejumlah 3, 4 dan 5 fitur sebelum memasuki tahap klasifikasi. Pada masing-masing tahapan pengujian klasifikasi SVM dengan coding design OAO dan OAA akan di uji juga dengan penggunaan kernel Gaussian, Linear dan Polynomial termasuk juga pengaruh 3, 4 dan 5 fitur kombinasi GLCM untuk melihat pengaruhnya terhadap hasil akurasi. Dari proses pengujian ini, sistem dapat digunakan untuk mengklasifikasikan intensitas angin siklon tropis berbentuk citra inframerah dengan tingkat akurasi sebesar 88% yang sesuai dengan saffir-simpson hurricane wind scale. Kata kunci : Machine Learning, Siklon Tropis, Saffir-Simpson, GLCM, SVM Abstract Today, weather changes can’t be predicted due to extraordinary events due to global warming. One of the effects of climate change has led to the proliferation of tropical cyclone events on Earth. In facilitating the process of classification of tropical cyclone intensity, a machine learning based system was created. The algorithm used in the feature extraction process is GLCM while in the classification process is SVM. First of all, the infrared image recognition process is done by extracting 14 GLCM features in the RGB, Ycbcr and Grayscale color spaces. Next, a combination of 3, 4 and 5 features is carried out before entering the classification stage. At each stage of SVM classification testing with OAO and OAA coding design will also be tested with the use of Gaussian, Linear and Polynomial kernels including the influence of 3, 4 and 5 GLCM combination features to see the effect on the results of accuracy. From this testing process, the system can be used to classify tropical cyclone intensity in the form of infrared images with an accuracy rate of 88% which corresponds to the saffir-simpson hurricane wind scale. Keywords: Machine Learning, Tropical Cyclone, Saffir-Simpson, GLCM, SVM

Copyrights © 2019






Journal Info

Abbrev

engineering

Publisher

Subject

Computer Science & IT Control & Systems Engineering Electrical & Electronics Engineering Engineering Industrial & Manufacturing Engineering

Description

Merupakan media publikasi karya ilmiah lulusan Universitas Telkom yang berisi tentang kajian teknik. Karya Tulis ilmiah yang diunggah akan melalui prosedur pemeriksaan (reviewer) dan approval pembimbing ...