cover
Contact Name
Nurhadi Setiawan
Contact Email
jurnal.lemigas@esdm.go.id
Phone
+6221-7394422
Journal Mail Official
jurnal.lemigas@esdm.go.id
Editorial Address
Jl. Ciledug Raya Kav. 109, Cipulir, Kebayoran Lama, Jakarta Selatan 12230
Location
Kota adm. jakarta pusat,
Dki jakarta
INDONESIA
Scientific Contribution Oil and Gas
ISSN : 20893361     EISSN : 25410520     DOI : https://doi.org/10.29017/SCOG.44.1.492
research activities, technology engineering development and laboratory in the oil and gas field including regional geology/basin modeling, petroleum geology, sedimentology, stratigraphy, petroleum geoscience, drilling and completion technology, production engineering, well simulation, formation evaluation, petrophysics, reservoir characterization, oil and gas reserves, reservoir modeling, field development/management, EOR, geomachanics, unconventional hydrocarbon technology, field processing facilities, flow assurance, gas technology/processing/storage, petroleum processing/refining technology, petroleum products, fuel quality/specification/storage, biofuel technology, corrosion/scale problem/water treatment, environment/remediation, CCUS, health and safety/petroleum hazard, emerging technologies
Articles 4 Documents
Search results for , issue "Vol 43, No 1 (2020)" : 4 Documents clear
Reserves and Resources Application in Welcoming Industry 4.0 Challenge Alfajri, Reza; Jauhari, Hanief; Hutasoit, Andar Parulian; Siregar, Sakti Parsaulian; Meliala, Ernita Sembiring
Scientific Contributions Oil and Gas Vol 43, No 1 (2020)
Publisher : PPPTMGB "LEMIGAS"

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1285.41 KB) | DOI: 10.29017/SCOG.43.1.392

Abstract

In the era of industry 4.0, digitalization is a very significant step to adopt in a company. Every worldly renowned industry, oil and gas included, needs to assimilate this term into its business process. Reserves and resources report depicts an oil and gas company future cash flow, wealth, performance, as well as growth. Therefore, creating and managing this report need meticulous attention. In order to comply with demand in industry 4.0 and simplify reserves and resources reporting process, reserves and resources database and web-based application need to be developed. First task to carry in establishing database is to create and input master data. Companies’ asset is classified into four common entities: asset, area, structure, and layer – as the smallest entity. Layer contains fluid type and oil and gas specific attributes. After master data is established, a web-based application to handle data transaction and reporting is developed. In order to maintain data security, access to this application is restricted into four roles: data entry user, data approval user, administrator, and management. Every role has its own privilege, for example data entry user can create, edit, and view data, while management can only view it. Other employees that need to access this application are based on management approval and restricted into view privilege under their asset location. This application has already been tested in two reserves and resources reporting window, and underwent bug-fixing and improvement process. Implementing this application in oil and gas company’s business process gives several benefits: minimizing human error, establishing a single data source, and cutting time consumption in creating reserves and resources report. This application is the solution in creating and managing the report, as well as displaying data in graphical view to help management makes corporate decision.
Thru Tubing Fracturing Experience in Tight Sand Reservoir, Offshore North West Java. Pradipta, Adrianus; Wirawan, Alvin Derry; Mulia, Janico Saverson; Prima, Muhammad Iqbal
Scientific Contributions Oil and Gas Vol 43, No 1 (2020)
Publisher : PPPTMGB "LEMIGAS"

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1072.934 KB) | DOI: 10.29017/SCOG.43.1.393

Abstract

Lately, hydraulic Fracturing become common stimulation to improve economic by increase production and adding reserve through unconventional play from tight sand reservoir. The fracturing treatment creates highly conductive pathway to enhance production and well drainage which lead to add reserves. Mostly, Hydraulic Fracturing treatment had been performing in new development wells of infill wells. After successful resulted hydraulic fracturing campaign in new infill wells, there was a trial to perform hydraulic fracturing in existing well thru existing tubing completion. First well which was selected as first to perform remedial frac, thru tubing hydraulic fracturing is consider as a cheaper way to perform rigless hydraulic fracturing compare to hydraulic fracturing with rig. The main challenges during operational come from limitation of existing completion, several adjustment in design and operational should be perform to optimization during fracturing job. This paper presents the experience including fracturing limitation and fracturing design during performing first thru tubing hydraulic fracturing in tight sand reservoir in Offshore North West Java.
Evaluation of Chemical for Sand Consolidation in Laboratory Scale Sugihardjo, Sugihardjo
Scientific Contributions Oil and Gas Vol 43, No 1 (2020)
Publisher : PPPTMGB "LEMIGAS"

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1230.913 KB) | DOI: 10.29017/SCOG.43.1.391

Abstract

These paper contains a highlight of laboratory experiment to evaluate the work of chemical for sand consolidation to strengthen the bonding between grains of rock while do not cause permeability reduction significantly. This experiment used reservoir rock and fluids to understand the interaction between the chemical solution and the reservoir rock and fluid. Firstly, the reservoir rock and fluid were analyzed their properties. The rock has been analyzed using CT Scan to drill the best representative core plug for the experiments, using SEM to identify the pore throat and pore geometry of the rock, using XRD to determine the minerals composition which mostly quartz. While the fluids have been analyzed for the anions and cations content, viscosity and other important properties. The brine particle content and also particle size distribution of the rock have been also over lied in the graph in order to know the possibility of bridging particle in the pore throat, but the graph looks good that no problem may arise from the bridging particle. Chemical for Sand Consolidation has been used in this experiment. Sand consolidation chemical normally contain plastic resin that has a property of bonding between solid materials. It sticks on the surface of solid materials and bonding together.The core flooding experiments have been run for 4 times, 2 times using synthetic cores and the other two using native cores. The experiments used synthetic cores reduce the permeability significantly. However, after cutting both ends of the core the permeability has indicated improvement. The other 2 experiments using native cores have reduced the permeability approximately 4 times down. The last two experiments have no cutting the ends of core for further experiments, so they cannot be compared to the first two experiment. So, the experiment procedures must be improved for the next evaluation, such as during curing time the rate of injected oil may be increased to reduce the adsorption of chemical to the surface area of the pore and also to hinder the flocculation of chemical in the pore space.
The Effect of Regular and Long Cyclic Steam Stimulation Method on Oil Production Performance of RUA Field in Central Sumatera Permatasari, Intan; Erfando, Tomi; Satria, Muhammad Yogi; Hardiyanto, Hardiyanto; Astsauri, Tengku Mohammad Sofyan
Scientific Contributions Oil and Gas Vol 43, No 1 (2020)
Publisher : PPPTMGB "LEMIGAS"

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (513.35 KB) | DOI: 10.29017/SCOG.43.1.525

Abstract

RUA field is classified into heavy oil reservoir type due to the high viscosity value and low API degree . This causes the RUA field can not be produced conventionally. the solution of this problem is to apply steam or thermal injection into reservoir which could reduce the viscosity of the heavy oil (Bera Babadagli, 2015). One of the best EOR methods that has been proven to overcome this issue is using CSS method (Suranto et al., 2020). During the production period, the CSS process can affect the viscosity of the oil by increasing the temperature of the oil in the reservoir. In one production well, cyclic work are applied periodically, its called repeated cyclic (J. J. Sheng, 2013). This is because time of reservoir temperature stays above the baseline temperature reservoir shortly. Even though the cyclic already done repeatedly, there is still a decrease of oil production, different peak reservoir temperatures, and found the possibility of pump damage after the cycle job which led to the need for analysis on these issues. The analysis was performed by looking at the historical production data, historical reservoir temperature data, and production pump work data in the RUA field. After a production history data that reprsentative analyzed, it was found that teh production after cyclic there is increasing, and there is also a decline from the previous cyclic production. Based on the results of the production analysis, it was found that 53.24% of the production wells in the RUA field were already in the ramp down stage and 46.75% were already in the ramp-up stage. Meanwhile, the average HET for regular cyclic jobs is 3-4 months and 5-6 months for long cyclic jobs. And from the pump work data, only 3 wells were damaged. This suggests that cyclic stimulation is completely safe to be performed in this field.

Page 1 of 1 | Total Record : 4


Filter by Year

2020 2020


Filter By Issues
All Issue Vol 45, No 1 (2022): Issue In Progress Vol 44, No 3 (2021) Vol 44, No 2 (2021) Vol 44, No 1 (2021) Vol 43, No 3 (2020) Vol 43, No 2 (2020) Vol 43, No 1 (2020) Vol 42, No 3 (2019) Vol 42, No 2 (2019) Vol 42, No 1 (2019) Vol 41, No 3 (2018) Vol 41, No 2 (2018) Vol 41, No 1 (2018) Vol 40, No 3 (2017) Vol 40, No 2 (2017) Vol 40, No 1 (2017) Vol 39, No 3 (2016) Vol 39, No 3 (2016) Vol 39, No 2 (2016) Vol 39, No 1 (2016) Vol 38, No 3 (2015) Vol 38, No 2 (2015) Vol 38, No 1 (2015) Vol 37, No 3 (2014) Vol 37, No 2 (2014) Vol 37, No 1 (2014) Vol 36, No 3 (2013) Vol 36, No 2 (2013) Vol 36, No 1 (2013) Vol 35, No 3 (2012) Vol 35, No 2 (2012) Vol 35, No 1 (2012) Vol 34, No 3 (2011) Vol 34, No 2 (2011) Vol 34, No 1 (2011) Vol 33, No 3 (2010) Vol 33, No 2 (2010) Vol 33, No 1 (2010) Vol 32, No 3 (2009) Vol 32, No 2 (2009) Vol 32, No 1 (2009) Vol 31, No 3 (2008) Vol 31, No 2 (2008) Vol 31, No 1 (2008) Vol 30, No 3 (2007) Vol 30, No 2 (2007) Vol 30, No 1 (2007) Vol 29, No 3 (2006) Vol 29, No 2 (2006) Vol 29, No 1 (2006) Vol 28, No 3 (2005) Vol 28, No 2 (2005) Vol 28, No 1 (2005) Vol 27, No 3 (2004) Vol 27, No 2 (2004) Vol 27, No 1 (2004) Vol 26, No 2 (2003) Vol 26, No 1 (2003) Vol 25, No 3 (2002) Vol 25, No 2 (2002) Vol 25, No 1 (2002) Vol 23, No 3 (2000) Vol 23, No 2 (2000) Vol 23, No 1 (2000) Vol 18, No 1 (1995) Vol 17, No 1 (1994) Vol 16, No 1 (1993) Vol 15, No 1 (1992) Vol 14, No 2 (1991) Vol 14, No 1 (1991) Vol 13, No 1 (1990) Vol 12, No 1 (1989) Vol 11, No 1 (1988) Vol 10, No 3 (1987) Vol 10, No 2 (1987) Vol 10, No 1 (1987) Vol 9, No 1 (1986) More Issue