cover
Contact Name
Tae Jin Park
Contact Email
iaes.ijra@gmail.com
Phone
-
Journal Mail Official
iaes.ijra@gmail.com
Editorial Address
-
Location
Kota yogyakarta,
Daerah istimewa yogyakarta
INDONESIA
IAES International Journal of Robotics and Automation (IJRA)
ISSN : 20894856     EISSN : 27222586     DOI : -
Core Subject : Engineering,
Robots are becoming part of people's everyday social lives and will increasingly become so. In future years, robots may become caretaker assistants for the elderly, or academic tutors for our children, or medical assistants, day care assistants, or psychological counselors. Robots may become our co-workers in factories and offices, or maids in our homes. The IAES International Journal of Robotics and Automation (IJRA) is providing a platform to researchers, scientists, engineers and practitioners throughout the world to publish the latest achievement, future challenges and exciting applications of intelligent and autonomous robots. IJRA is aiming to push the frontier of robotics into a new dimension, in which motion and intelligence play equally important roles. Its scope includes (but not limited) to the following: automation control, automation engineering, autonomous robots, biotechnology and robotics, emergence of the thinking machine, forward kinematics, household robots and automation, inverse kinematics, Jacobian and singularities, methods for teaching robots, nanotechnology and robotics (nanobots), orientation matrices, robot controller, robot structure and workspace, robotic and automation software development, robotic exploration, robotic surgery, robotic surgical procedures, robotic welding, robotics applications, robotics programming, robotics technologies, robots society and ethics, software and hardware designing for robots, spatial transformations, trajectory generation, unmanned (robotic) vehicles, etc.
Articles 7 Documents
Search results for , issue "Vol 11, No 2: June 2022" : 7 Documents clear
Modified power rate sliding mode control for robot manipulator based on particle swarm optimization Saif Sinan; Raouf Fareh; Sadeque Hamdan; Maarouf Saad; Maamar Bettayeb
IAES International Journal of Robotics and Automation (IJRA) Vol 11, No 2: June 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijra.v11i2.pp168-180

Abstract

This work suggests an optimized improved power rate sliding mode control (PRSMC) to control a 4-degrees of freedom (DOF) manipulator in joint space as well as workspace. The proposed sliding mode control (SMC) aims to improve the reaching mode and to employ an optimization method to tune the control parameters that operate the robotic manipulator adaptively. Inverse kinematics is used to obtain the joint desired angles from the end effector desired position, while forward kinematics is used to obtain the real Cartesian position and orientation of the end effector from the real joint angles. The proposed enhancements to the SMC involve the use of the hyperbolic tangent function in the control law to improve the reaching mode. Added to that, particle swarm optimization (PSO) is used to tune the parameters of the improved SMC. Furthermore, the Lyapunov function is utilized to analyze the stability of the closed-loop system. The proposed enhanced sliding mode combined with the optimization method is applied experimentally on a 4-DOF manipulator to prove the feasibility and efficiency of the proposed controller. Finally, the performance of the suggested control scheme is compared with the conventional power rate SMC in order to demonstrate the enhanced performance of the suggested method.
Using mobile laser scanner and imagery for urban management applications Jose-Joel Gonzalez-Barbosa; Karen Lizbeth Flores-Rodrıguez; Francisco Javier Ornelas-Rodrıguez; Felipe Trujillo-Romero; Erick Alejandro Gonzalez-Barbosa; Juan B. Hurtado-Ramos
IAES International Journal of Robotics and Automation (IJRA) Vol 11, No 2: June 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijra.v11i2.pp89-110

Abstract

Despite autonomous navigation is one of the most proliferate applications of three-dimensional (3D) point clouds and imagery both techniques can potentially have many other applications. This work explores urban digitization tools applied to 3D geometry to perform urban tasks. We focus exclusively on compiling scientific research that merges mobile laser scanning (MLS) and imagery from vision systems. The major contribution of this review is to show the evolution of MLS combined with imagery in urban applications. We review systems used by public and private organizations to handle urban tasks such as historic preservation, roadside assistance, road infrastructure inventory, and public space study. The work pinpoints the potential and accuracy of data acquisition systems to handled both 3D point clouds and imagery data. We highlight potential future work regarding the detection of urban environment elements and to solve urban problems. This article concludes by discussing the major constraints and struggles of current systems that use MLS combined with imagery to perform urban tasks and to solve urban tasks.
Fuzzy logic track control of an automated lawnmower Ajayi Oluwaseun Kayode; Balogun Daud Ishola; Ige Ebenezer Olubunmi; Adeyi Abiola John
IAES International Journal of Robotics and Automation (IJRA) Vol 11, No 2: June 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijra.v11i2.pp122-131

Abstract

Automation of agricultural and horticultural operations keeps received great attention for over a decade. The control parameters adopted depend on the location and characteristics of likely obstacles and navigation requirements. An automated lawnmower (ALM) with fuzzy logic control is presented in this study. Fuzzy logic was chosen to improve a previous work which was controlled via Bluetooth. Three ultrasonic sensors and two proximity sensors served as the eyes of the ALM for navigation and obstacle avoidance while the cutting blade was made of stainless steel and controlled by a brushless direct current (BLDC) motor. A fuzzy algorithm was implemented on an Arduino controller with the inputs and outputs as directional instructions. Obstacle avoidance was achieved by setting a range of values for the sensors interpreted by the fuzzy logic for the corresponding output in the form of navigations. Three trials tests were conducted on the ALM on a 5 m2 portion of land with an average grass height of 0.09 m. The average cut area was 4.46 m2, therefore achieving an efficiency of 89.2%, which is highly productive. It was observed that the power consumption was minimal compared to the previous design because at the end of the three trials 46% of the battery was left after over 3 hours of operation.
Kinematic analysis and design of a new two-limb parallel Schonflies-motion generator considering isotropic configuration Guanglei Wu; Huiping Shen
IAES International Journal of Robotics and Automation (IJRA) Vol 11, No 2: June 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijra.v11i2.pp132-140

Abstract

This paper presents a new two-limb parallel Schonflies-motion generator, which adopts a pair of alternative spatial modules equivalent to the parallelogram structure. This modular architecture can ensure the enhanced stiffness of the manipulator normal to the motion of the planar parallelogram structure due to the trapezoidal architecture. The preliminary kinematic problems, namely, the mobility, forward/inverse geometry and singularity, are studied as well as the kinematic isotropy. A neutral isotropic configuration of the robot is identified for the structural design of the link lengths.
Development of an Arduino-based photobioreactor to investigate algae growth rate and CO2 removal efficiency Hans Paolo S. Alarde; Kiara Jenvy C. Bartolabac; Dharel P. Acut; Jas Felicisimo A. Cane; Joy R. Magsayo
IAES International Journal of Robotics and Automation (IJRA) Vol 11, No 2: June 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijra.v11i2.pp141-160

Abstract

Global carbon dioxide (CO2) emissions are rising, and microalgae have been a primary focus for alleviating the negative impacts of increasing CO2 levels. CO2 sequestration is influenced by pH level, temperature, light, nutrient levels, and aeration. This study adapted a 2-chamber system with a 6-Liter vertical-column photobioreactor. It was constructed to remove CO2 from the air using microalgae. Arduino sensors, namely temperature, pH, and CO2 gas, were incorporated to monitor microalgal growth. Two 7-day trials, with an initial algae mass of 15 g, were implemented to investigate the growth and CO2 removal rates. The results showed that trial 1 yielded 21.5 g with a growth rate of 0.56 gxin-2 x day-1, and trial 2, a final sample of 19.7 g with a growth rate of 0.51 gxin-2 x day-1. The CO2 removal rate for trial 1 increased from 10.17% to 22.04%. However, the CO2 removal rate for trial 2 decreased from 15.66% to 3.55%. In terms of relative percent error, the Arduino sensors' accuracy was also determined to be low, ranging from 0.85 to 1.94. With accurate readings, the findings show that the CO2 removal efficiency rate and algae growth rate are directly proportional to each other.
Miniature pellet extruder concept for robotic 3D printing application Ankit Dixit; Vikash Kumar
IAES International Journal of Robotics and Automation (IJRA) Vol 11, No 2: June 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijra.v11i2.pp161-167

Abstract

Additive manufacturing more commonly known as 3D printing has been in the limelight of manufacturing research for a long. Many advances have been made in the past in elementary printing techniques, materials, and post-processing schemes. In this paper, a concept of a miniature pellet extruder is added at the end of the articulated robotic arm. The idea is to create a system that capable to print larger and more complex shapes of any parts with the help of a low payload capacity robotic arm and provide output as a single-piece structure. It also helps to print and handle objects with larger and more complex geometry with an optimized cycle time. Knowledge from this research work will also help to choose not only the right low payload capacity robotic arm, but also provides a logical approach for selecting a pellet extruder over a filament extruder.
An efficient regression method for 3D object localization in machine vision systems Xiem Hoang Van; Nam Do
IAES International Journal of Robotics and Automation (IJRA) Vol 11, No 2: June 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijra.v11i2.pp111-121

Abstract

Machine vision or robot vision plays is playing an important role in many industrial systems and has a lot of potential applications in the future of automation tasks such as in-house robot managing, swarm robotics controlling, product line observing, and robot grasping. One of the most common yet challenging tasks in machine vision is 3D object localization. Although several works have been introduced and achieved good results for object localization, there is still room to further improve the object location determination. In this paper, we introduce a novel 3D object localization algorithm in which a checkerboard pattern-based method is used to initialize the object location and followed by a regression model to regularize the object location. The proposed object localization is employed in a low-cost robot grasping system where only one simple 2D camera is used. Experimental results showed that the proposed algorithm significantly improves the accuracy of the object localization when compared to the relevant works.

Page 1 of 1 | Total Record : 7