cover
Contact Name
Anita Susilawati
Contact Email
anitasusilawati@lecturer.unri.ac.id
Phone
-
Journal Mail Official
jomase@isomase.org
Editorial Address
Teknik Mesin, Fakultas Teknik, Universitas Riau Kampus Bina Widya, Jl. HR. Soebrantas Km. 12,5 Panam, Pekanbaru 28293, Riau, INDONESIA
Location
Kota pekanbaru,
Riau
INDONESIA
Journal of Ocean, Mechanical and Aerospace -science and engineering- (JOMAse)
Published by Universitas Riau
ISSN : 23547065     EISSN : 25276085     DOI : http://dx.doi.org/10.36842/jomase
The mission of the JOMAse is to foster free and extremely rapid scientific communication across the world wide community. The JOMAse is an original and peer review article that advance the understanding of both science and engineering and its application to the solution of challenges and complex problems in naval architecture, offshore and subsea, machines and control system, aeronautics, satellite and aerospace. The JOMAse is particularly concerned with the demonstration of applied science and innovative engineering solutions to solve specific industrial problems. Articles preferably should focus on the following aspects: new methods or theory or philosophy innovative practices, critical survey or analysis of a subject or topic, new or latest research findings and critical review or evaluation of new discoveries. Scope The JOMAse welcomes manuscript submissions from academicians, scholars, and practitioners for possible publication from all over the world that meets the general criteria of significance and educational excellence. The scope of the journal is as follows: Naval Architecture and Offshore Engineering Computational fluid dynamic and Experimental Mechanics Hydrodynamic and Aerodynamics Noise and Vibration Aeronautics and Satellite Engineering Materials and Corrosion Fluids Mechanics Engineering Stress and Structural Modeling Manufacturing and Industrial Engineering Robotics and Control Heat Transfer and Thermal Power Plant Engineering Risk and Reliability Case studies and Critical reviews
Articles 6 Documents
Search results for , issue "Vol 64 No 2 (2020): Journal of Ocean, Mechanical and Aerospace -science and engineering- (JOMAse)" : 6 Documents clear
Failure Analysis of Hydraulic Cylinder Bolt on Turntable Vibrating Compactor in Aluminum Processing Plant Indah Permata Sari; Warman Fatra
Journal of Ocean, Mechanical and Aerospace -science and engineering- Vol 64 No 2 (2020): Journal of Ocean, Mechanical and Aerospace -science and engineering- (JOMAse)
Publisher : International Society of Ocean, Mechanical and Aerospace -scientists and engineers- (ISOMAse)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (437.913 KB) | DOI: 10.36842/jomase.v64i2.215

Abstract

The aluminum and its alloy have several characteristics i.e. relatively low density, high electrical and thermal conductivity and also good in corrosion resitance. The molding process of green anode blocks at an aluminum plant is carried out by an anode forming system. In this system, there is a printer called as turntable vibrating compactor or referred to as a ‘shaking machine’. During 55 seconds of anode block compaction, the fluctuating stress would be received by hydraulic cylinder bolt due to vibrations of the turntable vibrating compactor. Fluctuating stress that works continuously on the bolt can increase the tendency of failure. This paper aims to find out the causing factors and alternative solution for failure of the hydraulic cylinder bolt. To determine the cause of failure, several methods are carried out, i.e. fractography investigation, metallography examination according to ASTM E3-95, hardness testing according to ASTM E92-17 and tensile testing according to ASTM E8/E8M-16a. Fractography investigation show the failure mode of low cycle fatigue due to the application of high nominal stress. This is indicated by the presence of ratchet, beach mark, river mark and shear lip. The short life of the bolt due to the hardness and strength of the bolt after undergoing the heat treatment process Q + T cannot increase its endurance limit.
Application of Quality Control Circle Method in Crusher Knife Reconditioning Products (Case Study in PT. Andritz Pekanbaru) Samuel Putra Tambunan; Anita Susilawati; Yohanes Yohanes
Journal of Ocean, Mechanical and Aerospace -science and engineering- Vol 64 No 2 (2020): Journal of Ocean, Mechanical and Aerospace -science and engineering- (JOMAse)
Publisher : International Society of Ocean, Mechanical and Aerospace -scientists and engineers- (ISOMAse)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (422.587 KB) | DOI: 10.36842/jomase.v64i2.148

Abstract

The purpose of this study is to identify, analyze and evaluate the influencing of defects factors at the crusher knife reconditioning process in PT Andritz Pekanbaru. In this research adopted the Quality Control Circle (QCC) method. The QCC method is a quality control that is focused on the process of Plan, Do, Check, Action (PDCA). The research was carried out with 8 stages of PDCA, namely determining the theme, determining the title, finding the source of the problem, solving the problem plan, implementing, evaluating, standardizing, and determining the next plan. After observing the crusher knife reconditioning process, there were 10 defects that occurred in the crusher knife reconditioning process, which were porosity of 673 cases, curling tip of 78 cases and 57 of fewer cases followed. The repairs were carried out using the QCC method. The results of improvements were proved by reducing of the percentage of total defect porosity from 13% to 2%. Therefore, the repairs were successfully implementation, which decreasing of the defect porosity of 11%.
Effect of Cutting Depth and Feed Speed to Surface Roughness in Lathe Process of Screw Conveyor Shaft (Case Study: PT. RAPP) Junaidi Abdul Khair; Deni Pranata; Ujang Nuhadek
Journal of Ocean, Mechanical and Aerospace -science and engineering- Vol 64 No 2 (2020): Journal of Ocean, Mechanical and Aerospace -science and engineering- (JOMAse)
Publisher : International Society of Ocean, Mechanical and Aerospace -scientists and engineers- (ISOMAse)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (402.755 KB) | DOI: 10.36842/jomase.v64i2.200

Abstract

The metalworking process is one of the most important things in manufacturing of machine components, such as lathe process. Therefore, it is required continuously innovation to improve production quality. There are several ways to do this, for example by choosing the right type of tool, depth of cut, and spindle speed. In turning process for the production of goods is very important to produce a precision product in accordance to desiring of size and roughness. The turning speed of a lathe has a type of spindle rotation rate that is used according to production requirements, which uses a rotational speed that can be changed the rate of rotation of the machine, in order to determine the level of surface roughness in the turning process. One is affected the optimal conditions of the turning speed and feeding rate. In this paper, the variations of different rotational speed levels of low speed, medium speed and high speed according to variations of feeding rate in order to know the difference in roughness results for the screw conveyor shaft operation. The roughness was measured on the surface turning process using a reference of surface roughness stand comparator (ISO2632 / I-1975). The result of test revealed the greater speed of feed rate, the greater value of roughness. Reversely, the smaller speed of feed rate affected the lower roughness value.
Potential Investigation of B3 Waste (Used Oil) of Motorcycle as Alternative Diesel Fuel Yohanes Yohanes; Artinah Rukmana
Journal of Ocean, Mechanical and Aerospace -science and engineering- Vol 64 No 2 (2020): Journal of Ocean, Mechanical and Aerospace -science and engineering- (JOMAse)
Publisher : International Society of Ocean, Mechanical and Aerospace -scientists and engineers- (ISOMAse)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (480.155 KB) | DOI: 10.36842/jomase.v64i2.145

Abstract

The waste or used engine oil is categorized as a Hazardous and Toxic Wastes (bahan berbahaya dan beracun/B3). However, it may have a great potential such as the alternative fuel. This study is proposed to investigate the potential of waste/used oils of motorcycle for diesel fuel. This research used Strengths, Weaknesses, Opportunities and Threats (SWOT) analysis and Quality Function Deployment (QFD) methods to investigate the potential of the used oils of motorcycle. From analysis result based the SWOT and QFD this was revealed the waste or used oil of motorcycle having an opportunity for alternative diesel engine fuel, which it has a positive impact both in economic and environmental terms. Based the test result of fuel consumption between diesel and waste or used oil in terms of costs obtained Rp. 2,532.00/KW for diesel fuel consumption and Rp.787.00/KW for waste or used oil. Therefore, the waste or used oil of motorcycle has potential become diesel fuel. However, it need further research to investigate the efficiency of the diesel engine performances.
Tricopter Vehicle Frame Structure Design Integrated as Platform of Fixed Wing Atha Mapper 2150 Kaspul Anuar; Warman Fatra; Musthafa Akbar
Journal of Ocean, Mechanical and Aerospace -science and engineering- Vol 64 No 2 (2020): Journal of Ocean, Mechanical and Aerospace -science and engineering- (JOMAse)
Publisher : International Society of Ocean, Mechanical and Aerospace -scientists and engineers- (ISOMAse)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (412.545 KB) | DOI: 10.36842/jomase.v64i2.218

Abstract

To upgrade aerial vehicle of Atha Mapper 2150 capable of vertical take-off and landing capability, it needs to be integrated to the tricopter vehicle. In this study the tricopter frame structure was designed based on the Atha Mapper 2150 fixed wing vehicle. This study began with a calculation process to determine the dimensions of the tricopter.. Next, the process of building four tricopter concept designs with variations of the shape of the frame and the cross section of the arm. The four concept designs are selected using a decision matrix. Based on the values in decision matrix table, the design concept I (Y configuration and rectangular arm cross section) was the best design, because it has the highest weighting value. The selected design was then simulated for its structural strength in Ansys software by giving a load of thrust to the three arms of the tricopter frame. In the middle of frame is given a boundary condition in the form of hinges. From the static simulation results of the tricopter frame structure, the maximum stress value was 54,126 MPa, which occurred on the M3 arm. The greatest total deformation also occurred in the M3 arm with a value of 10,335 mm. The safety factor value of tricopter frame structure was 8.77. This shows the tricopter frame structure with the main material in the form of carbon fiber, acrylic and PLA meets the required safety criteria.
Numerical Modeling of Sediment Transport Rate and Shoreline Changes of Jazireh-e Shomali-Jonoubi Port in the Persian Gulf Milad Bamdadi Nejad; Mohammad Javad Ketabdari; Farhad Shojaei
Journal of Ocean, Mechanical and Aerospace -science and engineering- Vol 64 No 2 (2020): Journal of Ocean, Mechanical and Aerospace -science and engineering- (JOMAse)
Publisher : International Society of Ocean, Mechanical and Aerospace -scientists and engineers- (ISOMAse)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (773.623 KB) | DOI: 10.36842/jomase.v64i2.192

Abstract

Studying the sediments and predicting the coastal morphological changes have wide applications in coastal engineering, including coastal management, operation, and design of the structures as well as their maintenance, development, and expansion of coasts and coastal structures, which are of paramount importance. This study aims to model the shoreline changes around the Jazireh-e Shomali-Jonoubi Port, calculate the amount of advancement and recession due to the construction of the breakwater, and to determine the areas exposed to erosion and sedimentation. To this end, a series of primary information, including aerial and satellite images, hydrographic and topographic maps, and the specifications and grading of the sediment of the considered coast, has been collected and the overall morphology of the area has been determined. The input data into the model include a 12-year time series of the wave (height, period, and direction of the wave) and the wave climate. The length of the shoreline is 4 km and a profile perpendicular to the coast with a length of 1500 m has been applied to the model. Finally, using numerical modeling, the net and gross potential rates of annual and cumulative sediment transport, as well as shoreline changes after 12 years, were simulated. The effect and length of sedimentation behind the port’s breakwater after 1, 5, 10 and 12 years are 81, 190, 247 and 267 meters, respectively, which is in good agreement with the actual observations. Because the length of the breakwaters is 300 meters, the sedimentation problem has not yet been established for the port after 12 years.

Page 1 of 1 | Total Record : 6


Filter by Year

2020 2020


Filter By Issues
All Issue Vol 67 No 3 (2023): Journal of Ocean, Mechanical and Aerospace -science and engineering- (JOMAse) Vol 67 No 2 (2023): Journal of Ocean, Mechanical and Aerospace -science and engineering- (JOMAse) Vol 67 No 1 (2023): Journal of Ocean, Mechanical and Aerospace -science and engineering- (JOMAse) Vol 66 No 3 (2022): Journal of Ocean, Mechanical and Aerospace -science and engineering- (JOMAse) Vol 66 No 2 (2022): Journal of Ocean, Mechanical and Aerospace -science and engineering- (JOMAse) Vol 66 No 1 (2022): Journal of Ocean, Mechanical and Aerospace -science and engineering- (JOMAse) Vol 65 No 3 (2021): Journal of Ocean, Mechanical and Aerospace -science and engineering- (JOMAse) Vol 65 No 2 (2021): Journal of Ocean, Mechanical and Aerospace -science and engineering- (JOMAse) Vol 65 No 1 (2021): Journal of Ocean, Mechanical and Aerospace -science and engineering- (JOMAse) Vol 64 No 3 (2020): Journal of Ocean, Mechanical and Aerospace -science and engineering- (JOMAse) Vol 64 No 2 (2020): Journal of Ocean, Mechanical and Aerospace -science and engineering- (JOMAse) Vol 64 No 1 (2020): Journal of Ocean, Mechanical and Aerospace -science and engineering- (JOMAse) Vol 63 No 3 (2019): Journal of Ocean, Mechanical and Aerospace -science and engineering- (JOMAse) Vol 63 No 2 (2019): Journal of Ocean, Mechanical and Aerospace -science and engineering- (JOMAse) Vol 63 No 1 (2019): Journal of Ocean, Mechanical and Aerospace -science and engineering- (JOMAse) Vol 62 No 1 (2018): Journal of Ocean, Mechanical and Aerospace -science and engineering- (JOMAse) Vol 61 No 1 (2018): Journal of Ocean, Mechanical and Aerospace -science and engineering- (JOMAse) Vol 60 No 1 (2018): Journal of Ocean, Mechanical and Aerospace -science and engineering- (JOMAse) Vol 59 No 1 (2018): Journal of Ocean, Mechanical and Aerospace -science and engineering- (JOMAse) Vol 58 No 1 (2018): Journal of Ocean, Mechanical and Aerospace -science and engineering- (JOMAse) Vol 57 No 1 (2018): Journal of Ocean, Mechanical and Aerospace -science and engineering- (JOMAse) Vol 56 No 1 (2018): Journal of Ocean, Mechanical and Aerospace -science and engineering- (JOMAse) Vol 55 No 1 (2018): Journal of Ocean, Mechanical and Aerospace -science and engineering- (JOMAse) Vol 54 No 1 (2018): Journal of Ocean, Mechanical and Aerospace -science and engineering- (JOMAse) Vol 53 No 1 (2018): Journal of Ocean, Mechanical and Aerospace -science and engineering- (JOMAse) Vol 52 No 1 (2018): Journal of Ocean, Mechanical and Aerospace -science and engineering- (JOMAse) Vol 51 No 1 (2018): Journal of Ocean, Mechanical and Aerospace -science and engineering- (JOMAse) Vol 50 No 1 (2017): Journal of Ocean, Mechanical and Aerospace -science and engineering- (JOMAse) Vol 49 No 1 (2017): Journal of Ocean, Mechanical and Aerospace -science and engineering- (JOMAse) Vol 48 No 1 (2017): Journal of Ocean, Mechanical and Aerospace -science and engineering- (JOMAse) Vol 47 No 1 (2017): Journal of Ocean, Mechanical and Aerospace -science and engineering- (JOMAse) Vol 46 No 1 (2017): Journal of Ocean, Mechanical and Aerospace -science and engineering- (JOMAse) Vol 45 No 1 (2017): Journal of Ocean, Mechanical and Aerospace -science and engineering- (JOMAse) Vol 44 No 1 (2017): Journal of Ocean, Mechanical and Aerospace -science and engineering- (JOMAse) Vol 43 No 1 (2017): Journal of Ocean, Mechanical and Aerospace -science and engineering- (JOMAse) Vol 42 No 1 (2017): Journal of Ocean, Mechanical and Aerospace -science and engineering- (JOMAse) More Issue