cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
jurtdm@batan.go.id
Editorial Address
Pusat Teknologi dan Keselamatan Reaktor Nukir (PTKRN) Badan Tenaga Nuklir Nasional (BATAN) Gedung 80 Kawasan Puspiptek Setu - Tangerang Selatan Banten - Indonesia (15310)
Location
Kota adm. jakarta selatan,
Dki jakarta
INDONESIA
Jurnal Teknologi Reaktor Nuklir Tri Dasa Mega
ISSN : 1411240X     EISSN : 25279963     DOI : -
Core Subject : Science,
Jurnal Teknologi Reaktor Nuklir "TRI DASA MEGA" adalah forum penulisan ilmiah tentang hasil kajian, penelitian dan pengembangan tentang reaktor nuklir pada umumnya, yang meliputi fisika reaktor, termohidrolika reaktor, teknologi reaktor, instrumentasi reaktor, operasi reaktor dan lain-lain yang menyangkut reaktor nukli. Frekuensi terbit tiga (3) kali setahun setiap bulan Februari, Juni dan Oktober.
Arjuna Subject : -
Articles 5 Documents
Search results for , issue "Vol 17, No 1 (2015): Pebruari 2015" : 5 Documents clear
ANALISIS DESAIN PROSES SISTEM PENDINGIN PADA REAKTOR RISET INOVATIF 50 MW Sukmanto Dibyo; Endiah Puji Hastuti; Ign. Djoko Irianto
JURNAL TEKNOLOGI REAKTOR NUKLIR TRI DASA MEGA Vol 17, No 1 (2015): Pebruari 2015
Publisher : Pusat Teknologi Dan Keselamatan Reaktor Nuklir (PTKRN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (308.474 KB) | DOI: 10.17146/tdm.2015.17.1.2235

Abstract

Reaktor Riset Inovatif (RRI) merupakan jenis MTR (Material Testing Reactor) yang dipersiapkan ke depan sebagai desain reaktor baru. Daya RRI telah ditetapkan dari perhitungan neutronik dan termohidrolika teras yaitu 50 MW termal. Reaktor bertekanan 8 kgf/cm2 dan laju aliran massa pendingin primer 900 kg/s. Tantangan yang penting dalam menindak lanjuti desain reaktor ini adalah analisis desain pada sistem pendingin. Makalah ini bertujuan untuk menganalisis desain proses sistem pendingin utama reaktor RRI daya 50 MW (RRI-50) dengan menggunakan program Chemcad 6.1.4. Dalam analisis ini dilakukan perhitungan neraca massa dan energi (mass/energy balances) pada sistem pendingin primer dan sekunder sebagai pendingin utama. Masing-masing sistem pendingin tersebut terdiri dari 2 jalur beroperasi secara paralel dan 1 jalur redundansi. Disamping itu untuk desain termal unit komponen telah dianalisis dengan program RELAP5, frenchcreek dan Metoda Analitik. Hasil analisis yang diperoleh adalah desain diagram sistem pendingin yang mencakup data parameter entalpi, temperatur, tekanan dan laju aliran massa pendingin untuk masing-masing jalur. Adapun hasil desain unit komponen utama pada RRI-50 adalah tangki tunda dengan volume 51,5 m3, 2 unit pompa sentrifugal dan 1 unit pompa cadangan pada pendingin primer daya 141 kW/pompa dan pendingin sekunder daya 206 kW/pompa, 2 unit penukar panas tipe shell-tube dengan koefisien termal overall 1377 W/m2.oC dan 4 unit menara pendingin yang mampu melepaskan panas ke udara dengan desain temperatur approach 5,0 oC dan temperatur range 9,0 oC. Desain sistem pendingin reaktor RRI-50 ini telah menetapkan parameter operasi sistem pendingin yaitu temperatur, tekanan dan laju aliran massa pendingin dengan mempertimbangkan tuntutan aspek keselamatan teras reaktor sehingga desain temperatur maksimum pendingin masuk ke teras 44,5 oC. Kata kunci : RRI 50 MW, desain sistem pendingin, program Chemcad 6.1.4   Innovative Research Reactor RRI is a type of MTR (Material Testing Reactor), which is being prepared in the future as a design of new reactor. The power of RRI has been determined based on the core thermalhydraulic and neutronic calculation, which is 50 MWt. The reactor pressure is 8 kgf/cm 2 and coolant mass flow rate is 900 kg/s. The important challenge in the follow up of this reactor design is the design analysis of cooling system. The purpose of this study is to analyze the design of RRI reactor main coolant system at the power of 50 MWt (RRI-50) using ChemCAD 6.1.4. In this analysis the mass and energy balances at the primary and secondary cooling system are calculated as main coolant. Each of the cooling system consists of two lines operating in parallel and redundancy lines. Besides that, the thermal design of the component units have been analyzed using RELAP5, FrenchCreek and Analytical Methods. The analyses result obtained is a design of cooling system diagram which includes parameter of enthalpy, temperature, pressure and coolant mass flow rate of each line. Meanwhile, design result of main component unit are delay tank of 51.5 m3 volume, 2 unit centrifugal pumps and 1 unit stand-by pump for the primary coolant pump each of 141 kW power and secondary coolant pump each of 206 kW power, 2 unit of shell-tube heat exchanger with overall thermal coefficient of 1377 W/m2.oC and 4 unit cooling tower that capable to release the heat to the air at approach temperature of 5,0 oC and range temperature of 9,0 oC. design of reactor coolant system RRI-50 has decided the operating parameters of cooling system are temperature, pressure and mass flow rate by considering into the demands of the safety aspects of the reactor core therefore design of maximum coolant temperature to the reactor core is 44,5 oC. Keywords : RRI 50MW,  design of cooling system, program Chemcad 6.1.4.
INVESTIGATION ON THERMAL-FLOW CHARACTERISTICS OF HTGR CORE USING THERMIX-KONVEK MODULE AND VSOP'94 CODE Sudarmono Sudarmono
JURNAL TEKNOLOGI REAKTOR NUKLIR TRI DASA MEGA Vol 17, No 1 (2015): Pebruari 2015
Publisher : Pusat Teknologi Dan Keselamatan Reaktor Nuklir (PTKRN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (262.457 KB) | DOI: 10.17146/tdm.2015.17.1.2236

Abstract

The failure of heat removal system of water-cooled reactor such as PWR in Three Mile Islands and Fukushima Daiichi BWR makes nuclear society starting to consider the use of high temperature gas-cooled reactor (HTGR). Reactor Physics and Technology Division – Center for Nuclear Reactor Safety and Technology  (PTRKN) has tasks to perform research and development on the conceptual design of cogeneration gas cooled reactor with medium power level of 200 MWt. HTGR is one of nuclear energy generation system, which has high energy efficiency, and has high and clean inherent safety level. The geometry and structure of the HTGR200 core are designed to produce the output of helium gas coolant temperature as high as 950 °C to be used for hydrogen production and other industrial processes in co-generative way. The output of very high temperature helium gas will cause thermal stress on the fuel pebble that threats the integrity of fission product confinement. Therefore, it is necessary to perform thermal-flow evaluation to determine the temperature distribution in the graphite and fuel pebble in the HTGR core. The evaluation was carried out by Thermix-Konvek module code that has been already integrated into VSOP'94 code. The HTGR core geometry was done using BIRGIT module code for 2-D model (RZ model) with 5 channels of pebble flow in active core in the radial direction. The evaluation results showed that the highest and lowest temperatures in the reactor core are 999.3 °C and 886.5 °C, while the highest temperature of TRISO UO2 is 1510.20 °C in the position (z= 335.51 cm; r=0 cm). The analysis done based on reactor condition of 120 kg/s of coolant mass flow rate, 7 MPa of pressure and 200 MWth of power. Compared to the temperature distribution resulted between VSOP’94 code and fuel temperature limitation as high as 1600 oC, there is enough safety margin from melting or disintegrating. Keywords: Thermal-Flow, VSOP’94, Thermix-Konvek, HTGR, temperature   Kegagalan sistem pembuangan panas pada reaktor berpendingin air jenis PWR, Three Mile Islands dan reaktor BWR Fukushima Daiichi, menyebabkan masyarakat nuklir mulai memikirkan penggunaan reaktor pembangkit daya jenis temperatur tinggi berpendingin gas (HTGR). Bidang Fisika dan Teknologi Reaktor di Pusat Teknologi Reaktor dan Keselamatan Nuklir (PTRKN) mempunyai tugas melaksanakan kegiatan litbang desain konseptual reaktor kogenerasi dengan tingkat daya menengah yang berpendingin gas helium dengan daya 200 MWt. Desain HTGR200K merupakan salah satu sistem pembangkit energi yang memiliki efisiensi energi paling besar, dan tingkat keselamatan inheren yang tinggi dan bersih. Komposisi geometri dan struktur teras didesain agar dapat menghasilkan keluaran pendingin gas helium bertemperatur 950 0C sehingga dapat digunakan untuk produksi hidrogen dan atau unit industri proses lainnya secara kogeneratif. Luaran gas helium bertemperatur sangat tinggi ini akan menimbulkan tegangan termal pada bola bahan bakar yang mengancam integritas sistem pengungkungan produk fisi di dalamnya. Oleh karena itu perlu dilakukan evaluasi karakteristika termal flow untuk menentukan distribusi temperatur bahan bakar bola dan outlet temperatur pendingin gas helium teras HTGR. Hal ini dilakukan dengan menggunakan modul Thermix-Konvek yang terintegrasi dalam program VSOP’94. Geometri teras HTGR dikerjakan dalam modul BIRGIT untuk model teras 2-D (R-Z) dengan 5 kanal aliran pebble dalam teras aktif arah radial. Hasil evaluasi menunjukkan bahwa nilai tertinggi dan terendah temperatur yang terdapat pada teras   adalah sebesar 999.3 °C dan 886,5 °C. Demikian pula hasil temperatur tertinggi bahan bakar TRISO dan bahan bakar pebble di dalam teras, yaitu diperoleh sebesar  1510,20°C yang terletak pada lapisan bahan bakar inti UO2, di posisi z= 335.51 cm dan  r=0 cm. Analysis di lakukan pada laju massa aliran pendingin, tekanan dan daya masing-masing sebesar 120 kg/s, 7 Mpa dan 200MWth. Hasil perhitungan, jika dibandingkan dengan lisensi pembatas keselamatan terhadap maksimum temperatur bahan bakar pebble menunjukkan bahwa integritas bahan bakar pebble masih aman karena masih  lebih rendah dari batas desain yaitu sebesar 1600  oC. Kata kunci: Thermal-Flow, VSOP’94, Thermix-Konvek, HTGR, temperatur
ANALISIS EFEK KECELAKAAN WATER INGRESS TERHADAP REAKTIVITAS DOPPLER TERAS RGTT200K Zuhair Zuhair; Suwoto Suwoto
JURNAL TEKNOLOGI REAKTOR NUKLIR TRI DASA MEGA Vol 17, No 1 (2015): Pebruari 2015
Publisher : Pusat Teknologi Dan Keselamatan Reaktor Nuklir (PTKRN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1026.83 KB) | DOI: 10.17146/tdm.2015.17.1.2238

Abstract

Dalam high temperature reactor, koefisien reaktivitas temperatur yang didesain negatif menjamin reaksi fisi dalam teras tetap berada di bawah kendali dan panas peluruhan tidak akan pernah melelehkan bahan bakar yang menyebabkan terlepasnya zat radioaktif ke lingkungan. Namun masuknya air (water ingress) ke dalam teras reaktor akibat pecahnya tabung penukar panas generator uap, yang dikenal sebagai salah satu kecelakaan dasar desain, dapat mengintroduksi reaktivitas positif dengan potensi bahaya lainnya seperti korosi grafit dan kerusakan material struktur reflektor. Makalah ini akan menganalisis efek kecelakaan water ingress terhadap reaktivitas Doppler teras RGTT200K. Kapabilitas koefisien reaktivitas Doppler untuk mengkompensasi reaktivitas positif yang timbul selama kecelakaan water ingress akan diuji melalui serangkaian perhitungan dengan program MCNPX dan pustaka ENDF/B-VII untuk perubahan temperatur bahan bakar dari 800K hingga 1800K. Tiga opsi kernel bahan bakar UO2, ThO2/UO2 dan PuO2 dengan tiga model kisi bahan bakar pebble di teras reaktor diterapkan untuk kondisi water ingress dengan densitas air dari 0 hingga 1.000 kg/m3. Hasil perhitungan memperlihatkan koefisien reaktivitas Doppler tetap negatif untuk seluruh opsi bahan bakar yang dipertimbangkan bahkan untuk posibilitas water ingress yang besar. Efek water ingress lebih kuat pada model kisi dengan fraksi packing lebih rendah karena lebih banyak volume yang tersedia untuk air yang memasuki teras reaktor. Efek water ingress juga lebih kuat di teras uranium dibandingkan teras thorium dan plutonium sebagai konsekuensi dari fenomena Doppler dimana absorpsi neutron di daerah resonansi 238U lebih besar daripada 232Th dan 240Pu. Secara keseluruhan dapat disimpulkan bahwa, koefisien Doppler teras RGTT200K mampu mengkompensasi insersi reaktivitas yang diintroduksi oleh kecelakaan water ingress. Teras RGTT200K dengan bahan bakar UO2, ThO2/UO2 dan PuO2 dapat mempertahankan fitur keselamatan melekat dengan cara pasif. Kata kunci: Water ingress, reaktivitas Doppler, RGTT200K   In high temperature reactor, the negative temperature reactivity coefficient guarantees fission reaction in the core remain under the control and decay heat will not melt the fuel which cause the release of radioactive substances into the environment. But the entry of water (water ingress) into the reactor core due to rupture of a steam generator tube heat exchanger, which is known as one of the design basis accidents, can introduce positive reactivity with other potential hazards such as graphite corrosion and damage of the reflector structure material. This paper will investigate the effect of water ingress accident on Doppler reactivity coefficient of RGTT200K core. The capability of the Doppler reactivity coefficient to compensate positive reactivity incurred during water ingress accident will be examined through a series of calculations with MCNPX code and ENDF/B-VII library for fuel temperature changes from 800K to 1800K. Three options of UO2, ThO2/UO2 and PuO2 fuel kernels with three lattice models of fuel pebble in the reactor core was applied for condition of water ingress with water density from 0 to 1000 kg/m3. The results of the calculations show that Doppler reactivity coefficient is negative for the entire fuel options being considered even for a large possibility of water ingress. The effects of water ingress becomes stronger in lattice model with lower packing fraction because more volume available for water entering the reactor core. The effect of water ingress is also stronger in the uranium core compared to thorium and plutonium cores as a consequence of the Doppler phenomenon where the neutron absorption in resonance region of 238U is greater than 232Th and 240Pu. It can be concluded overall that Doppler coefficient of RGTT200K core has capability to compensate the reactivity insertion introduced by water ingress accident. RGTT200K core with UO2, ThO2/UO2 and PuO2 fuels can maintain the inherently safety features in a passive way. Keywords: Water ingress, Doppler reactivity, RGTT200K
INVESTIGASI TRANSIEN TEKANAN DAN TEMPERATUR SUNGKUP REAKTOR AP1000 DALAM KECELAKAAN SBO DENGAN SET-POINT TEKANAN PENGGUYURAN BERBEDA Hendro Tjahjono
JURNAL TEKNOLOGI REAKTOR NUKLIR TRI DASA MEGA Vol 17, No 1 (2015): Pebruari 2015
Publisher : Pusat Teknologi Dan Keselamatan Reaktor Nuklir (PTKRN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (245.845 KB) | DOI: 10.17146/tdm.2015.17.1.2233

Abstract

Reaktor AP1000 menerapkan konsep pendinginan eksternal untuk mengantisipasi naiknya tekanan akibat terjadinya kecelakaan kehilangan seluruh catu daya listrik atau Station Black Out (SBO). Mekanisme pembuangan kalor peluruhan secara pasif dilakukan melalui Passive Residual Heat Removal System (PRHRS) yang diteruskan ke In-containment Refueling Water Storage Tank (IRWST) dan selanjutnya pada sungkup reaktor. Sungkup didinginkan secara eksternal melalui konveksi alamiah pada celah udara dan melalui penguapan air pendingin yang diguyurkan di permukaan luar dinding sungkup ketika tekanan sungkup mencapai 1,7 bar sesuai set-point yang diterapkan. Dengan mekanisme ini, tekanan akan naik sampai mencapai nilai maksimum tertentu dan kemudian turun kembali ketika pendinginan sungkup sudah mulai efektif. Tujuan dari penelitian ini adalah untuk mengetahui sejauh mana pengaruh perbedaan set-point tekanan pengguyuran tersebut terhadap tekanan dan temperatur maksimum yang dicapai. Metode yang digunakan adalah dengan melakukan simulasi menggunakan model perhitungan analitik berbasis Matlab-07 pada kondisi transien yang mampu mengestimasi daya kalor yang dievakuasi, tekanan dan temperatur di dalam sungkup terhitung mulai terbentuknya uap di dalam sungkup. Hasil simulasi menunjukkan pola transien tekanan dan temperatur yang naik hingga maksimum dan turun kembali ke suatu nilai yang relatif tetap. Dengan variasi set-point mulai dari 1,7 bar hingga 5 bar, tekanan maksimum yang dicapai meningkat dari 3,5 bar hingga 5 bar dan temperatur maksimum dari 117 °C hingga 125 °C. Dapat disimpulkan bahwa di AP 1000, dengan naiknya set-point tekanan dimulainya pendinginan eksternal melalui pengguyuran air berpengaruh menaikkan tekanan dan temperatur maksimum yang terjadi akibat SBO. Kata kunci: Transien tekanan, set-point pendinginan eksternal sungkup, AP1000, SBO.  AP1000 reactor applying external cooling concept to anticipate the increase in pressure due to Station Black Out (SBO). Disposal mechanism of decay heat conducted through the Passive Residual Heat Removal System (PRHRS) to In-containment Refueling Water Storage Tank (IRWST) and subsequently forwarded to the reactor containment. Containment is externally cooled through natural convection in the air gap and through evaporation cooling water poured on the outer surface of the containment wall when the pressure attaints 1.7 bars according to the applied pressure set-point. With this mechanism, the pressure will increase until it reaches certain maximum value and then decrease when containment cooling already begun effectively. The purpose of this study was to determine the effect of the set-point to the maximum pressure and temperature reached. The utilized method is to perform simulations using Matlab-07 model of analytical calculations based on a transient state that is capable of estimating the power of heat evacuated and the pressure in the containment. The simulation results show the pattern of pressure and temperature transient rises to a maximum and drops back to a value that is relatively constant. With the set-point variation ranging from 1.7 bars to 5 bars, the maximum pressure varies from 3.5 bars to 5 bars and the maximum temperature varies from 117 °C to 125 °C. It can be concluded that with increasing the set-point pressure of starting the external cooling with water, the maximum pressure and temperature increase. Keywords: Transient pressure, containment external cooling set-point, AP1000, SBO.
ANALISIS PERUBAHAN MASSA BAHAN FISIL DAN NON FISIL DALAM TERAS PWR 1000 MWe DENGAN ORIGEN-ARP 5.1 Anis Rohanda
JURNAL TEKNOLOGI REAKTOR NUKLIR TRI DASA MEGA Vol 17, No 1 (2015): Pebruari 2015
Publisher : Pusat Teknologi Dan Keselamatan Reaktor Nuklir (PTKRN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (109.43 KB) | DOI: 10.17146/tdm.2015.17.1.2234

Abstract

Teras reaktor merupakan tempat terjadinya reaksi pembelahan (fisi) yang terkendali. Komponen reaktor seperti bahan bakar, kelongsong (cladding) dan air pendingin memiliki peranan penting dalam keberlangsungan reaksi fisi. Reaksi fisi mengakibatkan terbentuknya sejumlah nuklida hasil fisi dan hasil aktivasi. Hasil fisi berasal dari reaksi tangkapan neutron termal dengan bahan fisil sedangkan hasil aktivasi berasal dari interaksi bahan non fisil seperti material kelongsong dan pendingin oleh neutron dan gamma. Pada setiap pengoperasian suatu reaktor, informasi perubahan massa bahan fisil dan non fisil sangat berguna untuk manajemen bahan bakar dalam teras, seperti pengaturan reaktivitas, optimasi dan pemuatan bahan bakar. Untuk itu perlu dilakukan penelitian mengenai perubahan bahan fisil dan non fisil tersebut dalam teras reaktor. Hal ini dapat dilakukan dengan mengamati perubahan massa dari material dalam teras reaktor. Penelitian ini memiliki tujuan untuk mengetahui perubahan massa unsur penyusun material dalam teras, seperti massa dari unsur penyusun elemen bahan bakar nuklir, kelongsong dan air pendingin setelah digunakan dalam teras. Dari perubahan massa tersebut dapat diketahui fraksi bakar atau tingkat konsumsi bahan bakar yang digunakan. Penelitian dilakukan pada basis reaktor PLTN tipe PWR buatan pabrikan asal Amerika Serikat berdaya 1000 MWe dengan menggunakan code penghitung inventori hasil fisi ORIGEN-ARP 5.1, yaitu versi terbaru dari ORIGEN dengan library khusus reaktor daya. Hasil analisis menunjukkan bahwa bahan fisil U-235 mengalami pengurangan massa hingga 58% atau lebih dari separuhnya dari massa U-235 awal untuk tiap kali siklus operasi. Bahan fertil U-238 hanya mengalami pengurangan massa sekitar 2% dari massa awalnya tiap kali siklus operasi. Lain halnya dengan bahan non fisil yang mengalami perubahan massa yang berbeda-beda untuk tiap kali siklus operasinya yang tergantung pada tampang lintang aktivasi serta laju peluruhan dan pembentukan nuklida induk. Kata kunci: bahan fisil, bahan non fisil, PWR, ORIGEN-ARP 5.1   Controlled fission reaction occurs in the reator core. Reactor components such as fuel, cladding and cooling water have an important role in the sustainability of the fission reaction. Fission reaction causes the formation of a number of fission product nuclides and activation products. Fission product nuclides are produced from thermal neutron capture reaction of fissile material while the activation products are originated from interaction of non-fissile materials such as cladding material and coolant by neutron and gamma. At each of reactor operation, the information of fuel material changes in the form of non-fissile or fissile material, is very usefull for the management of core fuel, such as for reactivity control, optimization and loading of fuel. Hence, it needs to perform a research in the fissile and non-fissile material changes in the reactor core. This can be done by observing the change of material mass in the reactor core. The objective of this research is to determine the change in mass of material in the core, such as the mass of the nuclear fuel elements, cladding and cooling water after use in the core. From mass changes can be delivered to burn up calculation or fuel consumption level. The calculation were performed on the basis of the United States PWR 1000 MWe by using a fission inventory computer code of ORIGEN-ARP 5.1, a new version of ORIGEN with specific library for nuclear power plant. The analysis results show that the U-235 fissile material having a mass reduction up to 58% or more than half from the initial U-235 mass for each operation cycle period. Fertile material U-238 was reduced by about 2% only from the initial mass for each operating cycle period. For other cases, the non-fissile material case, mass changes reduced in various for each operation cycle, depend on activation cross-sections and decay and formation rate of parent nuclides. Keyword: fissile material, non fissile material, PWR, ORIGEN-ARP 5.1

Page 1 of 1 | Total Record : 5