p-Index From 2019 - 2024
0.408
P-Index
This Author published in this journals
All Journal Rekayasa Mesin
Sabila, Adriazka Fasa
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Pola Aliran Dua Fase Gas - Fluida Non Newtonian Melalui Belokan Pipa Kusumaningsih, Haslinda; Hamidi, Nurkholis; Sabila, Adriazka Fasa
Rekayasa Mesin Vol 10, No 3 (2019)
Publisher : Jurusan Teknik Mesin, Fakultas Teknik, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21776/ub.jrm.2019.010.03.12

Abstract

Two-phase flow applications can be used in chemical reactors, fuel cell and a cooler of electronic devices. Nowadays, the study on multiphase flow is concern with the gas-non Newtonian liquids flow. Since, non-Newtonian liquids commonly used in both industrial and medical applications such as blood flow, polymer and chemical solutions. The viscosity of a non-Newtonian liquid cannot be described by Newton?s law viscosity. The viscosity will affect flow behavior in pipes depends on the rheology of the fluid. The purpose of this study is to further investigate the flow pattern characteristic of gas-Newtonian/non-Newtonian liquid two-phase flows in a normal channel. Ultrapure water, polyacrylamide aqueous solutions (PAM) were used as test fluids, while argon gas as the test gas. Liquid and gas were introduced in T-junction, which placed on the upstream of the test section. In this study, the polyacrylamide concentration was variated on 0.1% wt and 0.4% wt. Moreover, the flow rate of liquids tested were variated on 0.1167 m3/s, 0.183 m3/s, 0.25 m3/s; and 0.283 m3/s. Therefore, the gas tested was variated on 0.083 m3/s, 0.167 m3/s, and 0.25 m3/s. The circular channel and bend pipe were used in this study, which has hydraulic diameter of 25.4 mm. The high-speed video camera was used to record the flow patterns in the bend as the test section. The flow pattern, bubble length, bubble velocity and void fraction were determined by analyzing the video image of the flows. Slug and plug flow patterns mostly appear in this study for each variation of liquids tested. Increasing gas superficial velocity induced the longer bubble. Furthermore, because of the higher viscosity of the non-Newtonian liquid,  the bubble nose of gas-non Newtonian liquid two-phase flow becomes sharper than the bubble nose of gas-Newtonian liquid two-phase flow.