Claim Missing Document
Check
Articles

Found 2 Documents
Search

Antioxidant Activity of Non-Volatile Lime (Citrus aurantifolia Swingle) Extract Permadi, Nandang; Julaeha, Euis; Rosandi, Yudi; Nurzaman, Mohamad
Jurnal Agrinika: Jurnal Agroteknologi dan Agribisnis Vol 5, No 2 (2021): SEPTEMBER
Publisher : Kadiri University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30737/agrinika.v5i2.1919

Abstract

The paper reports the antioxidant activity of a non-volatile fraction of lime processing byproducts from the lime syrup home industry. The activity was measured by spectrophotometry to obtain the 50% inhibition concentration (IC50) using the 2,2- diphenyl-1-picrylhydrazyl (DPPH) method. The sample was extracted by the maceration method with n-hexane, ethyl-acetate, and ethyl-ethanol. The IC50 values of 681 ppm, 458 ppm, and 2,775 ppm were n-hexane, ethyl-acetate, and ethyl-ethanol. The experiments concluded that the ethyl-acetate extract provides the best inhibition value to scavenge free-radicals DPPH. The HPLC and mass spectroscopy were measured to find out the content and group of active compounds. The significant compounds consisted of naringin, poncirin, or neoponcirin, which are known as antioxidant substances. The result shows the potential application of the lime by-products, its volatile fraction, and the nonvolatile fraction, which is the production residue of lime peel. This work can be applied as an alternative to zero-waste lime production, which may benefit the industry and the environment.
Protonation Process of Porous Silica Cluster Surface using Molecular Dynamics Method Alfaridzi, Raihan; Nugroho, Bintoro Siswo; Rosandi, Yudi
POSITRON Vol 13, No 1 (2023): Vol. 13 No. 1 Edition
Publisher : Fakultas Matematika dan Ilmu Pengetahuan Alam, Univetsitas Tanjungpura

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26418/positron.v13i1.63670

Abstract

Using molecular dynamic simulation, we developed an algorithm to protonate the surface of an amorphous porous silica grain particle model and study its effect. In this work, the silica grain model can be used to study cosmic dust coagulation. The surface of the silica cluster was protonated by placing H atoms on oxygen atoms having only a single bond, namely, the non-bridging oxygens. The H atoms are placed opposite the Si–O bond with a distance of around 1 Å to form silanol (Si–O–H) group termination on the silica surface. The angular conformation of the silanol was optimized by relaxing the surface at low temperature. We evaluated the number of silanol groups, the angular distribution of the Si-O-H bond, and the average distance between Si-O particles using the radial distribution function (RDF). The result of the study shows that minimizing the energy of the silica surface changes the angular distribution of the silanol from 180° to about 110° and between 140°-160°. However, the average distance between Si-O particles remains at 1 Å, which demonstrates the correctness of the atomic interaction model. The addition of protons on the silica surface is an essential factor in the simulation of cosmic dust collision since the modification of the surface chemistry may alter the contact surface energy, thus changing the probability of particle coagulation.