Satria, Eko
1 Department Of Physics, Institut Teknologi Sumatera 2 Research And Innovation Center For Disaster Mitigation And Early Detection Of Forest Fires, Institut Teknologi Sumatera, Lampung, Indonesia

Published : 5 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 5 Documents
Search

Perancangan Sensor LVDT dan Potensiometer Geser Sederhana Sebagai Alat Potensial Pendeteksi Pergeseran Tanah Tri Siswandi Syahputra; Heru Asyubi; Eko Satria
Jurnal Teori dan Aplikasi Fisika Vol 9, No 1 (2021): Jurnal Teori dan Aplikasi Fisika
Publisher : Universitas Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23960/jtaf.v9i1.2714

Abstract

A preliminary study on the design of a Linear Variable Differential Transformer (LVDT) sensor and a sliding potentiometer has been carried out. It is a distance measuring sensor that can be used as a ground shift sensor. This study aims to develop a new type of low cost mechanical sensor which has a high enough accuracy. The LVDT sensor is built using affordable materials such as PVC pipes, winding wires and iron cores, which is varied based on the number of primary coil and its diameter. While the potentiometer sensor is prepared by using linear bearing using electrode sheets of nickel and copper which is arranged by implemented the concept of the Newton-Wheatstone Bridge. The measurement value shows that the LVDT sensor with the number of primary coil of 110 and a diameter of 4 mm can measure with an accuracy of 0.5 mm and a range of more than 4 cm. While the sliding potentiometer using a sheet of copper electrodes can measure 0.5 mm with a range of more than 4 cm. The average error shown by the LVDT sensor and the sliding potentiometer is 5.2% and 6.4%, respectively.
CO2 Thermal Conductivity Detection in Gas Mixture for Concentration Measurement Using Bridge Configuration of Thermopiles Eko Satria; Melany Febrina; Mitra Djamal; Wahyu Srigutomo; Martin Liess
Science and Technology Indonesia Vol. 7 No. 4 (2022): October
Publisher : Research Center of Inorganic Materials and Coordination Complexes, FMIPA Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (947.182 KB) | DOI: 10.26554/sti.2022.7.4.443-448

Abstract

In this research, improvisation was carried out by modifying the market IR thermopile which functions as a thermal conductivity detector to measure the concentration of CO2 gas in the gas mixture. Four thermopiles are configured with a Wheatstone bridge with the aim of increasing the accuracy of the measurement system in detecting changes in CO2 concentration in the gas mixture (N2 and CO2). Using the bridge configuration of these four thermopiles, this measurement system can measure changes in CO2 concentration in small orders. The sensor developed is easy to manufacture, low cost, and has high linearity as evidenced by a correlation coefficient of 0.9943. From the experiments carried out, the sensor works quite accurately in detecting CO2 concentrations with the sensor’s sensitivity of -88.19 Volt/%, the detection range is 0% to 100%, and the RMS error value is 2.25.
Development of a New Data Processing System for Increasing the Accuracy of a Levitation Mass Method (LMM) based Measurement Eko Satria; Hendro Hendro; Yusaku Fujii; Mitra Djamal
Newton-Maxwell Journal of Physics Vol. 2 No. 1: April 2021
Publisher : UNIB Press

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1068.817 KB) | DOI: 10.33369/nmj.v2i1.15189

Abstract

Levitation Mass Method (LMM) is the method as a material tester to evaluate the mechanical response of general objects against impact forces. In this method, a mass is made to collide with material to be tested and the impulse, i.e. the time integration of the impact force, is measured highly accurately as a change in momentum of the mass. To realize linear motion with sufficiently small friction acting on the mass, a pneumatic linear bearing is used. The inertial force acting on the mass is calculated from the velocity of the mass. The velocity is determined, highly accurately by means of measuring the Doppler shift frequency of a laser light beam reflected on the mass using an optical interferometer. To determine the Doppler frequency shift for LMM data processing, the method for estimating the frequency is necessary. Several methods have been developed to estimate the frequency for the LMM data processing with high accuracy, i.e. Zero-Crossing Average Method (ZAM), Zero-Crossing Fitting Method (ZFM), Sine Wave Fitting, and Zero-crossing Sine Wave Fitting. All methods realized using the zero-crossing point of the waveform obtained from the digitizer. A better method to estimate frequency on the digitized waveform will enable higher precision for a more accurate result. In this research, a new method that can improve the accuracy has been developed. The program was developed using data segmentation to obtain the frequency of the digitized waveforms. The developed program has the smallest error ( 1,98 X 10^-10 for N= 200) compare to other methods (2,31 X 10-3 for ZAM; 1,10X10-3 for ZFM; and 8,69 X10-4 for Zero-crossing Sine Wave Fitting).
Preliminary research: Gas mixture flowrate detector based on acoustic measurement Melany Febrina; Eko Satria; Mitra Djamal
Newton-Maxwell Journal of Physics Vol. 2 No. 1: April 2021
Publisher : UNIB Press

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (581.487 KB) | DOI: 10.33369/nmj.v2i1.15198

Abstract

In preliminary research, a system for detecting the flow rate of the gas mixture (N2 and CO2) has been successfully built using acoustic measurements. This detector consists of a speaker as a transmitter of ultrasonic waves, and 3 microphones as a receiver of the ultrasonic waves. The quantity measured in this detection system test is the phase difference of the ultrasonic waves captured by the left and right microphones. The flow rate of the gas mixture will affect the phase difference value between the left and right microphones. With the increase of the flow rate of the gas mixture, the phase difference between the two microphones will increase. The flowrate range tested was between 0 and 0.8 l/min, with a concentration of 20% CO2 in the gas mixture of N2 and CO2. In testing this detection system, the absolute error is 2,4 10-2 l/min.
Acoustic CO2 Gas Sensor Based on Phase Difference Measurement Melany Febrina; Eko Satria; Mitra Djamal; Wahyu Srigutomo; Martin Liess
Journal of Science and Applicative Technology Vol 5 No 2 (2021): Journal of Science and Applicative Technology December Chapter
Publisher : Lembaga Penelitian dan Pengabdian Masyarakat (LPPM), Institut Teknologi Sumatera, Lampung Selatan, Lampung, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35472/jsat.v5i2.680

Abstract

In this research, an acoustic sensor has been successfully built to measure the concentration of CO2 gas in a mixture of gases (N2 and CO2). The nitrogen and carbon dioxide gases used are ultra-high purity (UHP) gas. The measurement parameter used is the speed of sound by utilizing the phase shift between ultrasonic wave signals that are sent and received continuously. The acoustic method in this research is by using the speaker as an ultrasonic wave transmitter, and the microphone as an ultrasonic wave receiver emitted by the speaker on the gas medium. This acoustic phase shift method is very sensitive to be used to determine the speed of sound on a gas medium. From the sensor testing, the sensor has good linearity in detecting changes in CO2 concentration in the gas mixture. The sensor test results have been validated theoretically and obtained an RMS error of 3.36 (3.36% with a maximum concentration of 100%), this proves that the work of the sensor is in accordance with the theory. In addition to theoretical validation, the work of the sensor has also been validated by looking at the direct relationship between sensor input and output through the inverse function, and an RMS error of 3.51 (3.51% with a maximum concentration of 100%) is obtained. From the overall results obtained, the acoustic CO2 gas sensor that is built can detect changes in CO2 concentrations in the gas mixture accurately, fabrication of the sensor is easy to do, and the costs required in the manufacturing process are cheap.