Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : Journal of Robotics and Control (JRC)

Effectiveness of CNN Architectures and SMOTE to Overcome Imbalanced X-Ray Data in Childhood Pneumonia Detection Pamungkas, Yuri; Ramadani, Muhammad Rifqi Nur; Njoto, Edwin Nugroho
Journal of Robotics and Control (JRC) Vol 5, No 3 (2024)
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jrc.v5i3.21494

Abstract

Pneumonia is a disease that causes high mortality worldwide in children and adults. Pneumonia is caused by swelling of the lungs, and to ensure that the lungs are swollen, a chest X-ray can be done. The doctor will then analyze the X-ray results. However, doctors sometimes have difficulty confirming pneumonia from the results of chest X-ray observations. Therefore, we propose the combination of SMOTE and several CNN architectures be implemented in a chest X-ray image-based pneumonia detection system to help the process of diagnosing pneumonia quickly and accurately. The chest X-ray data used in this study were obtained from the Kermany dataset (5216 images). Several stages of pre-processing (grayscaling and normalization) and data augmentation (shifting, zooming, and adjusting the brightness) are carried out before deep learning is carried out. It ensures that the input data for deep learning is not mixed with noise and is according to needs. Then, the output data from the augmentation results are used as input for several CNN deep learning architectures. The augmented data will also utilize SMOTE to overcome data class disparities before entering the CNN algorithm. Based on the test results, the VGG16 architecture shows the best level of performance compared to other architectures. In system testing using SMOTE+CNN Architectures (VGG16, VGG19, Xception, Inception-ResNet v2, and DenseNet 201), the optimum accuracy level reached 93.75%, 89.10%, 91.67%, 86.54% and 91.99% respectively. SMOTE provides a performance increase of up to 4% for all CNN architectures used in predicting pneumonia.