Maulana Arifin
Pusat Penelitian Tenaga Listrik dan Mekatronik - LIPI, Komp. LIPI Bandung, Jl. Sangkuriang No.21/154D, Bandung 40135

Published : 4 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 4 Documents
Search

Effect of Contact Pressure on the Resistance Contact Value and Temperature Changes in Copper Busbar Connection Risdiyanto, Agus; Rachman, Noviadi Arief; Arifin, Maulana
Journal of Mechatronics, Electrical Power and Vehicular Technology Vol 3, No 2 (2012)
Publisher : Research Centre for Electrical Power and Mechatronics, Indonesian Istitutes of Sciences

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (587.178 KB) | DOI: 10.14203/j.mev.2012.v3.73-80

Abstract

This paper discussed the influence of tightness or contacts pressure on copper busbar joints to determine changes in the value of the initial contact resistance and the maximum temperature at the joint due to high current load. The test sample was copper busbar 3 x 30 mm with configuration of bolted overlapping joint. Increasing contact pressure at the joint was measured to find out its effect on the value of contact resistance. The applied pressure was 6 to 36 MPa. Procedure of contact resistance measurement refer to the ASTM B539 standard using four-wire method. The sample subsequently loaded with the current of 350 A for 60 minutes and the maximum temperature at the joint was measured. The result showed that increasing contact pressure at the busbar joint will reduce the contact resistance and maximum temperature. The increase of contact pressure from 6 to 30 MPa causes decreasing contact resistance from 16 μΩ to 11 μΩ. Further increasing of contact pressure more than 30 MPa did not affect the contact resistance significantly. The lowest temperatur of busbar joint of 54°C was reached at a contact pressure of 36 Mpa.
Geometry Analysis and Effect of Turbulence Model on the Radial Rotor Turbo-Expander Design for Small Organic Rankine Cycle System Arifin, Maulana; Pasek, Ari Darmawan; Eddy, Zaidan
Journal of Mechatronics, Electrical Power and Vehicular Technology Vol 6, No 1 (2015)
Publisher : Research Centre for Electrical Power and Mechatronics, Indonesian Istitutes of Sciences

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (2799.709 KB) | DOI: 10.14203/j.mev.2015.v6.39-48

Abstract

Organic Rankine Cycle (ORC) is one of the most promising technology for small electric power generations. The geometry analysis and the effect of turbulence model on the radial turbo-expanders design for small ORC power generation systems were discussed in this paper. The rotor blades and performance were calculated using several working fluids such as R134a, R143a, R245fa, n-Pentane, and R123. Subsequently, a numerical study was carried out in the fluid flow area with R134a and R123 as the working fluids. Analyses were performed using Computational Fluid Dynamics (CFD) ANSYS Multiphysics on two real gas models, with the k-epsilon and SST (shear stress transport) turbulence models. The result shows the distribution of Mach number, pressure, velocity and temperature along the rotor blade of the radial turbo-expanders and estimation of performance at various operating conditions. The operating conditions are as follow: 250,000 grid mesh flow area, real gas model SST at steady state condition, 0.4 kg/s of mass flow rate, 15,000 rpm rotor speed, 5 bar inlet pressure, and 373K inlet temperature. By using those conditions, CFD analysis shows that the turbo-expander able to produce 6.7 kW and 5.5 kW of power when using R134a and R123, respectively.
Study of Biogas for Power Generation at Pesantren Saung Balong Al-Barokah, Majalengka, West Java Arifin, Maulana; Saepudin, Aep; Santoso, Arifin
Journal of Mechatronics, Electrical Power and Vehicular Technology Vol 2, No 2 (2011)
Publisher : Research Centre for Electrical Power and Mechatronics, Indonesian Istitutes of Sciences

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (309.624 KB) | DOI: 10.14203/j.mev.2011.v2.73-78

Abstract

Utilization of biogas from cow manure as a fuel alternative for power plants is done through an anaerobic process. A pilot plant with biogas production of 7 m3/day has been installed at Pesantren Saung Balong. Biogas is used for everyday purposes such as cooking and lighting, and used as pure biogas with 2.500 Watt scale generator. Biogas produced with the rate of 0.080 m3/hr. Biogas produced during the measurement (450 minutes) is 0.604 m3. With these data it is predicted that within a day (24 hours) biogas which can be generated is equal to 1.92 m3. Meanwhile, consumption of biogas to the generator with 1.047 W load is 0.019 m3/minutes, the generator will operate for approximately 101.05 minutes or 1.68 hours. Thus electricity that can be saved is 1.759 kWh per day or 52.77 kWh per month and electricity cost that can be saved that is equal to Rp.40.896/month. 
Rotordynamics analysis of solar hybrid microturbine for concentrated solar power Arifin, Maulana
Journal of Mechatronics, Electrical Power and Vehicular Technology Vol 11, No 1 (2020)
Publisher : Research Centre for Electrical Power and Mechatronics, Indonesian Istitutes of Sciences

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14203/j.mev.2020.v11.38-44

Abstract

Microturbine based on a parabolic dish solar concentrator runs at high speed and has large amplitudes of subsynchronous turbo-shaft motion due to the direct normal irradiance (DNI) fluctuation in daily operation. A detailed rotordynamics model coupled to a full fluid film radial or journal bearing model needs to be addressed for increasing performance and to ensure safe operating conditions. The present paper delivers predictions of rotor tip displacement in the microturbine rotor assembly supported by a journal bearing under non-linear vibrations. The rotor assembly operates at 72 krpm on the design speed and delivers a 40 kW power output with the turbine inlet temperature is about 950 °C. The turbo-shaft oil temperature range is between 50 °C to 90 °C. The vibrations on the tip radial compressor and turbine were presented and evaluated in the commercial software GT-Suite environment. The microturbine rotors assembly model shows good results in predicting maximum tip displacement at the rotors with respect to the frequency and time domain.