B. Astuti
Teknik Geologi, STTNAS Yogyakarta, Jln. Babarsari, Catur Tunggal, Depok, Sleman, Yogyakarta

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Waduk Parangjoho dan Songputri: Alternatif Sumber Erupsi Formasi Semilir di daerah Eromoko, Kabupaten Wonogiri, Jawa Tengah Bronto, Sutikno; Mulyaningsih, Sri; Hartono, G.; Astuti, B.
Indonesian Journal on Geoscience Vol 4, No 2 (2009)
Publisher : Geological Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1126.755 KB) | DOI: 10.17014/ijog.v4i2.71

Abstract

http://dx.doi.org/10.17014/ijog.vol4no2.20091The Semilir Formation was typically originated from products of a very explosive volcanic activity, i.e. breccias, lapillistones, and tuffs containing abundant pumice. It has a light grey to white colour and high silica andesite to dacite in composition, mainly rich in volcanic glass and quartz. Sedimentary structures of these volcanic rocks are massive, grading, planar bedding, and cross-bedding to antidunes, with grain size varies from ash (≤ 2 mm) to lapilli (2 – 64 mm) to bomb and block (> 64 mm). The formation is widely distributed from the west side (Pleret and Piyungan areas, Bantul Regency, Special Province of Yogyakarta) until Eromoko area in the east (Wonogiri Regency, Jawa Tengah Province). Stratigraphically, the Semilir Formation underlies the Nglanggeran Formation, and overlies the Mandalika Formation in the eastern part and Kebo-Butak Formation in the western part. Geomorphological- and lithological analyses of the Semilir Formation in areas of Parangjoho and Song- putri Dams, Eromoko Sub-regency, Wonogiri Regency indicate that the two depressions were alternatively volcanic sources of the Semilir Formation in the Eromoko area. This is proved by the presence of co-ignimbrite breccias(co-ignimbrite lag fall deposits), that descriptively they are polymict breccias. This rock is characterized by a mixing of pumice and various hard rock fragments that primarily are juvenile materials (volcanic blocks, bombs), accessory-, and accidental rock fragments set in pumice-rich volcanic ash and lapilli sizes. The accessory materials came from older volcanic rocks, whereas the accidental ones were originated from basement rocks. During a caldera forming event or a destruction period of an older composite volcanic cone(s), all older rocks resting above the magma chamber were ejected to the surface by a very high magmatic pressure. Since they were heavier than the juvenile material, most accessory and accidental rock fragments were left (lag fall) in caldera rim behind the ash and pumice flow. In the dam areas of Parangjoho and Songputri, the lag fall fragments consisting of andesite, pyroxene andesite, dacite, and pumice, being 10 – 150 cm in diameter are set in pumice-rich lapilli tuffs. Some of the rock fragments are volcanic blocks and bombs, while the older rocks are angular to very angular shape, having prismatic jointing or jigsaw-crack structures. The eruptions in the Parangjoho and Songputri craters were controlled by north-south trending fractures, and they resemble to the Katmaian caldera explosion type.  
Gunung Api purba Watuadeg: Sumber erupsi dan posisi stratigrafi Bronto, Sutikno; MulyaningSih, Sri; Hartono, G.; Astuti, B.
Indonesian Journal on Geoscience Vol 3, No 3 (2008)
Publisher : Geological Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (856.976 KB) | DOI: 10.17014/ijog.v3i3.53

Abstract

http://dx.doi.org/10.17014/ijog.vol3no3.20081Pillow lava flows of pyroxene basalt containing 50 wt.% SiO are exposed at Opak River, west of Watuadeg Village, Sleman - Yogyakarta. The length of flow structures is between 2 – 10 m, with diameter of 0.5 – 1.0 m and it has a glassy skin at the surface body. Flow directions vary from N70E in the northern side, through N 120E in the middle to N 150E in the southern side. About 150 m away from the river to the west, there is a small hill about 15 m high, that has a similar composition with the pillow lavas. Both lava flows and the small hill are composed of pyroxene basalt, dark grey in color, hypocrystalline vitrophyre to porphyritic texture, with fine-grained phenocrysts of pyroxene (10 %) and plagioclase (25 %) set in glassy groundmass. These data indicate that the small hill was the eruption source of the basaltic pillow lavas. The lavas are overlain by pumice-rich volcaniclastic rocks, composed of tuff, lapillistones and pumice breccias, that are known as the Semilir Formation. Near the contact with lavas, the volcaniclastic rocks contain some fragments of pyroxene basalt, similar composition with the pillow lavas. This fact, together with analyses of petrology, volcanology, and radiometric dating show that the basaltic pillow lavas are unconformably overlain by the Semilir Formation. Â