Mkhululi Elvis Siyanda Mnguni
Cape Peninsula University of Technology

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

An approach for a multi-stage under-frequency based load shedding scheme for a power system network Mkhululi Elvis Siyanda Mnguni; Yohan Darcy Mfoumboulou
International Journal of Electrical and Computer Engineering (IJECE) Vol 10, No 6: December 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v10i6.pp6071-6100

Abstract

The integration of load shedding schemes with mainstream protection in power system networks is vital. The traditional power system network incorporates different protection schemes to protect its components. Once the power network reaches its maximum limits, and the load demand continue to increase the whole system will experience power system instability. The system frequency usually drops due to the loss of substantial generation creating imbalance. The best method to recover the system from instability is by introducing an under-frequency load shedding (UFLS) scheme in parallel with the protection schemes. This paper proposed a new UFLS scheme used in power systems and industry to maintain stability. Three case studies were implemented in this paper. Multi-stage decision-making algorithms load shedding in the environment of the DIgSILENT power factory platform is developed. The proposed algorithm speeds-up the operation of the UFLS scheme. The load shedding algorithm of the proposed scheme is implemented as a systematic process to achieve stability of the power network which is exposed to different operating conditions. The flexibility of the proposed scheme is validated with the modified IEEE 39-bus New England model. The application of the proposed novel UFLS schemes will contribute further to the development of new types of engineers.
Decentralized proportional-integral controller based on dynamic decoupling technique using Beckhoff TwinCAT-3.1 Nomzamo Tshemese-Mvandaba; Mkhululi Elvis Siyanda Mnguni
International Journal of Electrical and Computer Engineering (IJECE) Vol 13, No 3: June 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v13i3.pp2721-2733

Abstract

An improved technique for the design of decentralized dynamic decoupled proportional-integral (PI) controllers to control many variables of column flotation was developed and implemented in this paper. This work was motivated by challenges when working with multiple inputs and multiple outputs (MIMO) systems that are not controllable by conventional linear feedback controllers. Conventional feedback control design consists of various drawbacks when it comes to complex industrial processes. The introduction of decentralization, decoupling, and many advanced controls design methods overcomes these drawbacks. Hence, the design and implementation of control systems that mitigate stability for MIMO systems are important. The developed closed-loop model of the flotation process is implemented in a real-time platform using TwinCAT 3.1 automation software and CX5020 Beckhoff programmable logic controllers (PLC) through the model transformation technique. The reasons for using the CX5020 as an implementation environment were motivated by the reliability, and is built according to new industry standards, allowing transformation, which makes it more advantageous to be used more than any other PLCs. This is done to validate the effectiveness of the recommended technique and prove its usability for any multivariable system. Comparable numerical results are presented, and they imply that industrial usage of this method is highly recommended.