Claim Missing Document
Check
Articles

Found 2 Documents
Search

A native enhanced elastic extension tables multi-tenant database Magy El Banhawy; Walaa Saber; Fathy Amer
International Journal of Electrical and Computer Engineering (IJECE) Vol 10, No 6: December 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v10i6.pp6618-6628

Abstract

A fundamental factor of digital image compression is the conversion processes. The intention of this process is to understand the shape of an image and to modify the digital image to a grayscale configuration where the encoding of the compression technique is operational. This article focuses on an investigation of compression algorithms for images with artistic effects. A key component in image compression is how to effectively preserve the original quality of images. Image compression is to condense by lessening the redundant data of images in order that they are transformed cost-effectively. The common techniques include discrete cosine transform (DCT), fast Fourier transform (FFT), and shifted FFT (SFFT). Experimental results point out compression ratio between original RGB images and grayscale images, as well as comparison. The superior algorithm improving a shape comprehension for images with grahic effect is SFFT technique.
Hybrid load balance based on genetic algorithm in cloud environment Walaa Saber; Walid Moussa; Atef M. Ghuniem; Rawya Rizk
International Journal of Electrical and Computer Engineering (IJECE) Vol 11, No 3: June 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v11i3.pp2477-2489

Abstract

Load balancing is an efficient mechanism to distribute loads over cloud resources in a way that maximizes resource utilization and minimizes response time. Metaheuristic techniques are powerful techniques for solving the load balancing problems. However, these techniques suffer from efficiency degradation in large scale problems. This paper proposes three main contributions to solve this load balancing problem. First, it proposes a heterogeneous initialized load balancing (HILB) algorithm to perform a good task scheduling process that improves the makespan in the case of homogeneous or heterogeneous resources and provides a direction to reach optimal load deviation. Second, it proposes a hybrid load balance based on genetic algorithm (HLBGA) as a combination of HILB and genetic algorithm (GA). Third, a newly formulated fitness function that minimizes the load deviation is used for GA. The simulation of the proposed algorithm is implemented in the cases of homogeneous and heterogeneous resources in cloud resources. The simulation results show that the proposed hybrid algorithm outperforms other competitor algorithms in terms of makespan, resource utilization, and load deviation.