Claim Missing Document
Check
Articles

Found 3 Documents
Search

Two-level scheduling scheme for integrated 4G-WLAN network Mohammed Qasim Taha; Zaid Hussien Ali; Abdullah Khalid Ahmed
International Journal of Electrical and Computer Engineering (IJECE) Vol 10, No 3: June 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (799.399 KB) | DOI: 10.11591/ijece.v10i3.pp2633-2643

Abstract

In this paper, a novel scheduling scheme for the Fourth Generation (4G)-Wireless Local Area Network (WLAN) network is proposed to ensure that end to end traffic transaction is provisioned seamlessly. The scheduling scheme is divided into two stages; in stage one, traffic is separated into Actual Time Traffic (ATT) and Non-Actual-Time Traffic (NATT), while in stage two, complex queuing strategy is performed. In stage one, Class-Based Queuing (CBQ) and Deficit Round Robin (DRR) are used for NATT and ATT applications, respectively to separate and forward traffic themselves according to source requirements. Whereas in the stage, two Control Priority Queuing (CPQ) is used to assign each class the appropriate priority level. Evaluation of the performance of the integrated network was done according to several metrics such as end-to-end delay, jitter, packet loss, and network’s throughput. Results demonstrate major improvements for AT services with minor degradation on NAT applications after implementing the new scheduling scheme.
Modeling Solar Modules Performance Under Temperature and Solar Radiation of Western Iraq Zaid Hussein Ali; Abdullah Khalid Ahmed; Amer Tayes Saeed
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 9, No 4: December 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v9.i4.pp1842-1850

Abstract

This paper demonstrates a mathematical representation of Photovoltaic (PV) solar cells and hence panels performance. One-diode solar cell model is implemented to simulate the cell and extract the performance indications. The tested PV modules are BP Solar (60 Watt) and Synthesis Power (50 Watts), which are operating in a PV generation system in the University of Anbar - Iraq, College of Applied Sciences. The math model demonstrates Power versus Voltage (P-V) characteristic curves to depict and study various parameters with affecting variations in the PV array performance. The parameters include ambient and cell temperature degrees and solar irradiance (G) level which are the main elements to dictate the productivity of a solar system. G is represented by sun unit (1 sun=1 kW/m2). The outcomes of the simulation model characteristics curves have been compared with curves provided by the tested modules data sheets. MATLAB software has been used to simulate the model and extract the results. This paper also investigated photovoltaic simulation with maximum power point tracking (MPPT) converter to evaluate hence predict the behaviors of the whole photovoltaic DC current generation using PSIM Power Electronics program. The model focuses on the basic components in PV systems; The panel and the DC-DC converter. The modeling outcome data will be used as a reference verifying the performance of the tested modules during the year seasons under the dominating dusty hot weather in western Iraq.
Tracking technique for the sudden change of PV inverter load Amer Tayes Saeed; Mohammed Qasim Taha; Abdullah Khalid Ahmed
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 10, No 4: December 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (665.842 KB) | DOI: 10.11591/ijpeds.v10.i4.pp2076-2083

Abstract

Many power electronics applications require a power calculation in the control system. To get a suitable output, engineers need to control the process and regulate the power exchange with the grid. Since real and reactive power calculations are so crucial a topic, a novel control strategy for a single-phase photovoltaic (PV) inverter has been developed. Therefore, Direct power control (DPC) and a single-phase three-level space vector pulse width modulation (SVPWM) combine as a control and modulation system. In this paper, predictive real and reactive power control and SVPWM method are conferred in the inner loop. A voltage controller based on a proportionalintegral (PI) scheme is used in the outer loop to acquire constant output voltage and provide power refers to the DPC. The performance of the proposed method is verified by using MATLAB/SIMULINK.