Muhammad Haikal Satria
Universiti Teknologi Malaysia

Published : 4 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 4 Documents
Search

802.11s QoS Routing for Telemedicine Service Muhammad Haikal Satria; Jasmy bin Yunus; Eko Supriyanto
International Journal of Electrical and Computer Engineering (IJECE) Vol 4, No 2: April 2014
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (447.997 KB)

Abstract

The merits of 802.11s as the wireless mesh network standard provide a lowcost and high independent scalability telemedicine infrastructure. However,challenges in degradation of performance as hops increase and the absent of Quality of Service (QoS) provision need to be resolved. The reliability and timely manner are the important factor for successful telemedicine service. This research investigates the use of 802.11s for telemedicine services. A new model of 802.11s based telemedicine infrastructure has been developed for this purpose. A non deterministic polynomial path selection is proposed to provide end-to-end QoS provisioning in 802.11s. A multi-metric called QoS Price metric is proposed as measurement of link quality. The QoS Price is derived from multi layers values that reflect telemedicine traffic requirement and the resource availability of the network. The proposed solution has modified the path management of 802.11s and added resource allocation in distributed scheme.DOI:http://dx.doi.org/10.11591/ijece.v4i2.5597
Emergency Prenatal Telemonitoring System in Wireless Mesh Network Muhammad Haikal Satria; Jasmy bin Yunus; Eko Supriyanto
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 12, No 1: March 2014
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v12i1.24

Abstract

Telemedicine promises a great opportunity for health care service improvement. However, it has several issues for its implementation in certain area. They include communication service quality, infrastructure and operational cost. Since Wireless Mesh Network (WMN) is designed to reduce the infrastructure cost and operational cost, an investigation of network performance for implementation of telemedicine is required.  In this paper, a simulation to investigate the wireless mesh network quality of service.  Using network simulator 2, The QoS performance analysis was performed in different routing protocol scenarios of proposed system. It showed that OLSR protocol for Mesh Network maintained the time transfer of the EPT data. The field testing of the proposed system to measure the distance with various time has already been done.  The infrastructure has been also implemented using low cost 5.8 GHz transceiver for backhauls and low cost 2.4 GHz transceiver for clients.  Test result shows that the low cost telemedicine system is able to do real time communication between patient and medical staff with medical data rate up to 2 Mbps. It shows that telemonitoring system using wireless mesh network can give a low cost application in emergency time with acceptable medical data transfer quality. 
Development of Embedded System for Centralized Insomnia System Novi Azman; Mohd Khanapi Abd Ghani; Muhammad Haikal Satria; Muhammad Zillullah Mukaram
Proceeding of the Electrical Engineering Computer Science and Informatics Vol 5: EECSI 2018
Publisher : IAES Indonesia Section

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (367.536 KB) | DOI: 10.11591/eecsi.v5.1600

Abstract

Insomnia is a common health problem in medical field as well as in psychiatry. The measurement of those factors could be collected by using polysomnography as one of the current standards. However, due to the routine of clinical assessment, the polysomnography is impractical and limited to be used in certain place. The rapid progress of electronic sensors to support IoT in health telemonitoring should provide the real time diagnosis of patient at home too. In this research, the development of centralized insomnia system for recording and analysis of patient with chronic-insomnia data is proposed. The system is composed from multi body sensors that connected to main IOT server. The test has been done for 5 patients and the result has been successfully retrieved in real time.
Left Ventricle Heart Three Dimension Mechanical Simulation for Kinetic Energy Mohd Hafizulhadi Mohd Asri; Muhammad Haikal Satria; Arief Marwanto; M. Haider Abu Yazid
Proceeding of the Electrical Engineering Computer Science and Informatics Vol 6: EECSI 2019
Publisher : IAES Indonesia Section

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eecsi.v6.2012

Abstract

The major drawbacks of current pacemaker are the battery replacement. Patient will need additional surgery to replace the pacemaker unit with the new one. It has been suggested to use rechargeable battery to solve this issue. Recharging a battery within the body, however, is not viable owing to the lifetime of tissue heating and battery charging. For these purposes, the use of piezo-polymer is appropriate as a power harvester for a self-powered pacemaker. Piezo-polymer was commonly used for energy harvesting, but none for implantable cardiothoracic devices. This study focuses on identifying the optimum location on the heart to put the piezo-polymer. This research is conducted by simulation of left ventricle of heart via ANSYS. Heart stress-strain Finite Element Analysis (FEA) are employed to obtain the maximum harvested power. The result shows the location of myocardial contraction that produces sufficient kinetic energy for the placement of the pacemaker. The heart 3-dimensional images are taken from cardiac-CT or cardiac-MRI to search the optimum location on the heart for energy harvesting and minimize pacing energy. Left ventricle electronics model is created to represent the movement of the left ventricle and how piezo-polymer works. In conclusion, the left ventricular wall movement and deformation induced by the movement of the cardiac wall were analyzed in the simulation using the left ventricular model to obtain the place of the peak kinetic energy.