Hilman F. Pardede
Indonesian Institute of Sciences

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Convolutional Neural Network and Feature Transformation for Distant Speech Recognition Hilman F. Pardede; Asri R. Yuliani; Rika Sustika
International Journal of Electrical and Computer Engineering (IJECE) Vol 8, No 6: December 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (581.851 KB) | DOI: 10.11591/ijece.v8i6.pp5381-5388

Abstract

In many applications, speech recognition must operate in conditions where there are some distances between speakers and the microphones. This is called distant speech recognition (DSR). In this condition, speech recognition must deal with reverberation. Nowadays, deep learning technologies are becoming the the main technologies for speech recognition. Deep Neural Network (DNN) in hybrid with Hidden Markov Model (HMM) is the commonly used architecture. However, this system is still not robust against reverberation. Previous studies use Convolutional Neural Networks (CNN), which is a variation of neural network, to improve the robustness of speech recognition against noise. CNN has the properties of pooling which is used to find local correlation between neighboring dimensions in the features. With this property, CNN could be used as feature learning emphasizing the information on neighboring frames. In this study we use CNN to deal with reverberation. We also propose to use feature transformation techniques: linear discriminat analysis (LDA) and maximum likelihood linear transformation (MLLT), on mel frequency cepstral coefficient (MFCC) before feeding them to CNN. We argue that transforming features could produce more discriminative features for CNN, and hence improve the robustness of speech recognition against reverberation. Our evaluations on Meeting Recorder Digits (MRD) subset of Aurora-5 database confirm that the use of LDA and MLLT transformations improve the robustness of speech recognition. It is better by 20% relative error reduction on compared to a standard DNN based speech recognition using the same number of hidden layers.
Tuned bidirectional encoder representations from transformers for fake news detection Amsal Pardamean; Hilman F. Pardede
Indonesian Journal of Electrical Engineering and Computer Science Vol 22, No 3: June 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v22.i3.pp1667-1671

Abstract

Online medias are currently the dominant source of Information due to not being limited by time and place, fast and wide distributions. However, inaccurate news, or often referred as fake news is a major problem in news dissemination for online medias. Inaccurate news is information that is not true, that is engineered to cover the real information and has no factual basis. Usually, inaccurate news is made in the form of news that has mass appeal and is presented in the guise of genuine and legitimate news nuances to deceive or change the reader's mind or opinion. Identification of inaccurate news from real news can be done with natural language processing (NLP) technologies. In this paper, we proposed bidirectional encoder representations from transformers (BERT) for inaccurate news identification. BERT is a language model based on deep learning technologies and it has found effective for many NLP tasks. In this study, we use transfer learning and fine-tuning to adapt BERT for inaccurate news identification. The experiments show that our method could achieve accuracy of 99.23%, recall 99.46%, precision 98.86%, and F-Score of 99.15%. It is largely better than traditional method for the same tasks.