Claim Missing Document
Check
Articles

Found 2 Documents
Search

Variable reluctance synchronous machines in saturated mode Hleli Hanene; Flah Aymen; Tounsi Souhir
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 12, No 2: June 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v12.i2.pp662-673

Abstract

Electric vehicle seems largely based on electrical machines. Finding the best motor type seems be important for having more performances and a transport system robustness. In this work, we present an analytical model of the synchronous machine with variable reluctances in linear and saturated modes. The angular position of the rotor (θ) and the phase current (i) will beused as parameters. The analytical model of this machine will allow us to determinate its magnetic characteristics such inductors, magnetic flux and electromagnetic torque. The results obtained by the analytical model are compared with those obtained by the finite element method. So, basing on Matlab/Simulink tool and by working with finite element method, these results are depicted and the paper objective is illustrated.
Smart database concept for Power Management in an electrical vehicle Chokri Mahmoudi; Flah Aymen; Sbita Lassaad
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 10, No 1: March 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (432.831 KB) | DOI: 10.11591/ijpeds.v10.i1.pp160-169

Abstract

As world population continues to grow and the limited amount of fossil fuels begin to diminish, it may not be possible to afford the needed amount of energy demanded by the world by only using fossil fuels. Meanwhile, the abundant nature of renewable energy sources brings new beginning for next generations. Greater penetration of electric vehicles will play an important role in building green and healthy world. The main remaining issue to make the switch from conventional to electric vehicle is performance cost; Efficient EVs that can drive for long distances, on single charge, are still expensive for ordinary consumer. To address this range problem, many attempts have been made during last decade. The goal was to conceive a power efficient electric vehicle, capable of managing its energy and reach longer distances. It depends on the electrical architectures and used algorithms.This paper adds new perspective for power Management in EVs; The proposed methodology introduces a new power management architecture based on communication and car learning. The conventional software level in EV has been replaced with self readjustable software. EVs are connected through a database, and can upload or download adjustment parameters while software is running.To take advantage of the new architecture, a new learning technique concept is introduced too, based on Cloud experience exchange between Electric Vehicles. This enhancement aims to build a better EV experience in power management through Cloud sharing and definitely cut with conventional architecture that may have reached its boundaries.