Dedy Kristanto
Petroleum Engineering Department, Universitas Pembangunan Nasional "Veteran" Yogyakarta

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

An Integrated Analysis for Post Hydraulic Fracturing Production Forecast in Conventional Oil Sand Reservoir Dedy Kristanto; IMD Saputra Jagadita
Journal of Earth Energy Engineering Vol. 10 No. 1 (2021)
Publisher : Universitas Islam Riau (UIR) Press

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25299/jeee.2021.5024

Abstract

Hydraulic fracturing is one of the stimulation treatment in oil and gas well by creating a fractured through a proppant injection to the formation. A most critical problem in the actual oil and gas industry is that the fracturing engineers could not forecast approximately post-production performance after fracturing the job, which is a severe problem. This problem phenomenon has occurred in some cases and significantly impacts production such as oversizing or lower sizing of pumping rate setting. Integrated analysis for post job hydraulic fracturing production based on the geometry model iteration and Productivity Index (PI) comparison in the conventional oil sand reservoir is simply a method to analyze and forecast approximately incremental production performance. The fractured software generates a fractured geometry model that considers half-length of fractured parameters, width in front of perforation, average width, fractured height, and pressure net. Then we compare the Productivity Index's prediction value through the method of Cinco-Ley, Samaniego and Dominguez. A case study in the well of TM#2 (conventional oil sand reservoir) was conducted as the comprehensive study to provide the data and proceed analysis for production forecast. We found that the geometry model and iteration of PKN 2D method generated a small fractured geometry model compare to fracCADE software. The cooperation between PKN 2D method and Cinco-Ley, Samaniego, and Dominguez concept successfully predict post-production forecast. This concept could be proposed as a quick look measurement for production scenarios to overcome pump sizing.
Simulation Study of Fluid Flow and Estimation of a Heterogeneous Porous Media Properties Using Lattice Gas Automata Method Dedy Kristanto; Windyanesha Paradhita
Journal of Petroleum and Geothermal Technology Vol 1, No 2 (2020): November
Publisher : Universitas Pembangunan Nasional "Veteran" Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31315/jpgt.v1i2.3856

Abstract

Most models used in reservoir simulation studies are on the scale of meters to hundreds of meters. However, increasing resolution in geological measurements results in finer geological models. Simulations study of particle movements provide an alternative to conventional reservoir simulation by allowing the study of microscopic and/or macroscopic fluid flow, which is close to the scale of geological models. In this paper, the FHP-II (Frisch, Hasslacher and Pomeau - FHP) model of lattice gas automata were developed to study fluid flow in order to estimate the properties of heterogeneous porous media. Heterogeneity simulated by placing solid obstacles randomly in a two-dimensional test volume. Properties of the heterogeneous porous media were estimated by the shape, size, number of the obstacles and by the distribution of the obstacles within the volume. Results of the effects of grain sizes and shapes, and its distribution in the porous media on the tortuosity, effective porosity, permeability and displacement efficiency were obtained. An investigation of fluid flow and comparison with laboratory experiment were also presented. Reasonably good agreement between the lattice gas automata simulation and laboratory experiment results were achieved.