Sebal S. Ezzaten
University of Technology

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Interval type-2 fuzzy logic controller design for distillation column process Mohammed Y. Hassan; Sebal S. Ezzaten
IAES International Journal of Robotics and Automation (IJRA) Vol 8, No 3: September 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (418.819 KB) | DOI: 10.11591/ijra.v8i3.pp155-163

Abstract

Distillation columns are the most units used in oil reļ¬neries, and chemical factories. This is a very difficult process and non-linear. Therefore, the development of intelligent control systems for the columns of the distillation is very difficult. In this paper, an intelligent control strategy using Mamdani type Interval Type-2 PI Like Fuzzy Logic Controller (IT2FLC) is used. The controller consists of PD-Like FLC with integrated output. Kernek Mendel (KM) algorithm is used as the type reduction method for the IT2FLC. This controller is applied to control a continuous binary trays distillation column. The controller has three tunable gains to reach minimum overshoot, minimum error and minimum settling time at least variables can be controlled. The controller is a variable of the molar fraction of distillate and the reflex ratio is the manipulated variable. Integral Time Absolute Error (ITAE) is employed as an objective function to measure the improvement in time response where the error is between desired and output product composition. The performance of IT2FLC is compared with Type-1 PI Like FLC (T1FLC). The results of the simulations have shown that the project of IT2FLC works efficiently to no- disturbance and the effects of disturbance. Improve average is of 85% for a constant set-point without a disturbance and 80% with a disturbance. Furthermore, the average improvement for a step set-point is 53% without disturbance and 74% with disturbance. All results of the simulation confirmed the hardiness and control any consistent inaccurate with obvious advantages for the IT2FLC.