Claim Missing Document
Check
Articles

Found 6 Documents
Search

EVALUASI RENCANA PEMASANGAN SENSOR STRUCTURE HEALTH MONITORING SYSTEM JEMBATAN PULAU BALANG II Juandra Hartono; Umi Khoiroh
TERAS JURNAL Vol 11, No 2 (2021): Volume 11 Nomor 2, September 2021
Publisher : UNIVERSITAS MALIKUSSALEH

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29103/tj.v11i2.549

Abstract

Abstrak Salah satu isu utama dalam setiap penerapan Structure Health Monitoring System (SHMS) jembatan bentang panjang khususnya jembatan Pulau Balang II adalah bagaimana membuat SHMS tersebut dapat diandalkan secara efektif. Penggunaan sensor yang terlalu banyak tidaklah efisien demi mendapatkan informasi yang selengkap-lengkapnya terkait kondisi jembatan. Tujuan utama riset ini adalah untuk menganalisia tipe sensor, posisi penempatan sensor dan jumlah sensor yang akan dipasang pada SHMS jembatan Pulau Balang sesuai kebutuhan sensor yang efektif dan efisien. Pengamatan SHMS meliputi lendutan dek, pylon serta tegangan dek, pylon. Metode penelitian berupa pengamatan langsung di lapangan, analisa data dan diskusi dengan stakeholder jembatan. Dari hasil analisis terdapat 13 jenis sensor yang sebaiknya dipasang pada SHMS Jembatan Pulau Balang dengan total kebutuhan sensor berjumlah 87 buah. Posisi penempatan sensor sebagian besar ada di pylon, kabel dan dek yang disesuaikan dengan tipe jembatan yaitu cable stayed. Untuk sensor gempa disarankan perlu dipasang hal ini dikarenakan wilayah tersebut memiliki seismistis paling rendah yang didominasi oleh tiga zona sesar utama yaitu sesar mangkalihat, sesar tarakan dan sesar maratus oleh karena itu Kalimantan bukanlah daerah yang bebas gempa bumi. Kata kunci: structural health monitoring system (SHMS), sensor, pylon, dek, cable stayed  Abstract One of the main issues in each application of Structure Health Monitoring System (SHMS) in long span bridge particularly Pulau Balang II Bridge is how to make the SHMS effectively dependable. The excessive use of sensors is inefficient in order to obtain complete information regarding the condition of the bridge. The main purpose of this research is to analyze the type of sensor, the position of the sensor placement and the number of sensors that will be installed on the SHMS structure of the Balang Island bridge according to the need for effective and efficient sensors. SHMS observations include deck deflection, pylon and deck stress, pylon. The research method is in the form of direct observation in the field, data analysis and discussions with bridge stakeholders. From the results of the analysis, there are 13 types of sensors that should be installed on the Balang Island Bridge SHMS with a total sensor requirement of 87 units. Most of the sensor placement positions are in the pylons, cables and decks that are adapted to the type of bridge, namely cable stayed. For earthquake sensors, it is recommended to install this because the area has the lowest seismicity which is dominated by three main fault zones, namely the Mangkalihat Fault, Tarakan Fault and Maratus Fault. Therefore, Kalimantan is not an earthquake-free area Keywords: structural health monitoring system (SHMS), sensor, pylon, deck, cable stayed
Komparasi Kuat Tekan Beton Geopolimer Berbahan Dasar Fly Ash Dengan Metode Curing Oven dan Suhu Ruang Juandra Hartono; Laely Laely Fitria H; Adityo Budi U; Hinawan Teguh S
TERAS JURNAL Vol 12, No 2 (2022): Volume 12 Nomor 2, September 2022
Publisher : UNIVERSITAS MALIKUSSALEH

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29103/tj.v12i2.714

Abstract

Penelitian ini mengkaji beton geopolimer yang diproduksi menggunakan fly ash dan bersumber dari hasil pembakaran batubara PLTU Tanjung Jati, Kabupaten Jepara, Jawa Tengah, Indonesia. Fly Ash yang digunakan dikategorikan jenis F. Alkali aktivator berbentuk sodium hidroksida (NaOH) dan sodium silikat (Na₂SiO₃) dengan molaritas (10M). Riset ini bertujuan mengetahui perbandingan kuat tekan maksimum binder dan beton geopolimer diumur 28 hari melalui 2 metode perawatan, dibiarkan didalam suhu ruangan dan di oven pada temperatur 60°C selama 24 jam. Rangkaian pengujian yang dilakukan berupa uji material fly ash metode X-Ray Flourence (XRF), slump, kuat tekan binder dan beton geopolimer. Perbandingan aktivator yang digunakan pada pengujian binder dan beton geopolimer adalah 1:2 dan 1:3. Hasil riset menunjukkan nilai kuat tekan binder dan beton maksimum umur 28 hari sebesar 37,48 Mpa dan 60,09 Mpa terdapat pada variasi binder 10-3CR (curing oven) dengan rasio perbandingan NaOH terhadap Na₂SiO₃ sebesar 1:3. Dari hasil analisa disimpulkan bahwa perawatan beton curing time 24 jam pada suhu 60°C memberikan kuat tekan maksimal dibandingkan dengan udara terbuka, hal ini disebabkan karena tipe material pembentuk fly ash proses hidrasinya sangat lambat, jika perawatan menggunakan oven maka proses hidrasi berlangsung lebih cepat sehingga tingkat kekerasan beton geopolimer akan lebih cepat pula. Disamping itu meningkatkan temperatur curing bisa mempercepat reaksi polimerisasi sehingga kuat tekan beton semakin meningkat akan tetapi pada suhu tertentu kuat tekan tersebut akan mengalami penurunan disebabkan sebagian air telah menguap sehingga kualitas beton geopolimer menjadi berkurang.Kata kunci: fly ash, geopolimer, sodium hidroksida, sodium silikat, curing time
Evaluasi Keutuhan Borepile Metode Crosshole Sonic Logging (CSL) Pembangunan Jembatan Pulau Balang II Juandra Hartono
Jurnal Aplikasi Teknik Sipil Vol 19, No 4 (2021)
Publisher : Departemen Teknik Infrastruktur Sipil Institut Teknologi Sepuluh Nopember Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1018.904 KB) | DOI: 10.12962/j2579-891X.v19i4.9745

Abstract

The problem that occurs in the Balang II Island Bridge construction project in East Kalimantan Province is the blockage of concrete flowing through the tremi pipe when casting the borepile foundation at sea. A considerable distance from the initial location of the tremi pipe (on land) to the endpoint of casting requires a fairly long tremi pipe. This blockage causes the concrete to flow imperfectly. There are many speculations about the cause of this problem, including leaks in the tremi pipe and the uniformity of the concrete mix. Based on these problems to prevent the failure of the foundation structure, an integrity test will be carried out on non-destructive piles. The integrity test to be carried out is in the form of a Crosshole Sonic Logging Test (CSL). The results of the CSL test on pylon P1 show that of the 17 borepile piles tested 2 piles have abnormalities, namely the P1-64 pile with the P/D category on the whole cross-section and the P1-52 P/F category on some sections (± 40%). Overall it can be concluded that the integrity of the drill pile on pylon P1 is still quite safe.
ANALISA KORELASI ANTARA FREKUENSI DENGAN BENTANG JEMBATAN BERDASARKAN UJI DINAMIK Hinawan T. Santoso; Laely F. Hidayatiningrum; Adityo B. Utomo; Juandra Hartono; Masrianto -
Jurnal Jalan-Jembatan Vol 38 No 1 (2021)
Publisher : Direktorat Bina Teknik Jalan dan Jembatan

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

The population of bridges on National Road in 2020 has reached 21,054 units with a total length of 587,309 meters. About 10.5% of bridges have a service life of less than 10 years, 68.1% in the range of 10 - 50 years, and 5.3% more than 50 years. As the service life increases, the condition of the bridge will decrease. This bridge condition is obtained from the results of a detailed inspection using the visual method. The accuracy of this method is highly dependent on the objectivity, ability, and experience of the bridge inspector. The large population of bridges, variations in service life and conditions, and limited experienced inspectors are obstacles in conventional bridge inspections. As an alternative, the dynamic test method can be used to check bridge conditions more quickly and accurately. The natural frequency of the dynamic test can be used to determine the integrity condition and the level of structural damage, by comparing it to the theoretical frequency. So far, the theoretical frequency is determined based on calculations or structural modeling. The limited data of technical specifications, design drawings, and as-built drawings are often an obstacle. Experience and special skills are also needed in calculating or modeling this structure. This study aims to analyze the correlation between frequency and bridge span based on bridge dynamic test data in Indonesia. The results obtained a mathematical formula, where the value of the frequency of the bridge is correlated to the span of the bridge with a correlation coefficient of -0.85. This coefficient shows that the relationship between the variables under consideration is very strong and inverse, where the longer the bridge span, the smaller the vertical frequency value of the bridge. Keywords: Dynamic Test, Bridge Span, Vertical Frequency, Correlation Analysis, Mathematical Formula
ALTERNATIF PERENCANAAN KOMPOSISI CAMPURAN BETON DENGAN GABUNGAN BAHAN TAMBAH KIMIA TIPE F DAN D AGAR WAKTU BUKA ACUAN DIPERCEPAT Juandra Hartono; Masrianto Masrianto; Indira L. Widuri; Bhima Dhanardono; Hinawan T. Santoso
Jurnal Jalan-Jembatan Vol 39 No 1 (2022)
Publisher : Direktorat Bina Teknik Jalan dan Jembatan

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

The demand for an acceleration of project completion time is often an obstacle, especially in structural work which is a critical path. The length of time for concrete curing and formwork dismantling sometimes obstructs the progress of the project. The time required for casting, concrete curing and unloading of formwork in a long span bridge construction project is ± 14 days with a record that there are no obstacles in the field. Based on these problems, researchers are trying to provide an alternative solution through a compressive strength test with a variant of the concrete quality and the curing time using chemical additives type F and type D. The study aims to find the minimum concrete compressive strength, the curing time, and the effects of adding a chemical additive that refers to General Specifications Standard 2018 (70% of the designed concrete compressive strength). The variant of the concrete quality is 40 MPa, 50 Mpa, and 60 Mpa while the variant of the curing time is 1,2,3,7, and 28 days. Based on the study, the minimum concrete compressive strength for each concrete quality is 28,58 MPa, 36,85 MPa, and 46,25 MPa. The curing time needed for fc’ 40 MPa and fc’ 50 Mpa is 2 days while for fc’ 60 MPa is 3 days. The use of chemical additives also has an impact on increasing compressive strength. The maximum compressive strength value of 28 days is found in the variation of f'c 60 Mpa of 62.20 Mpa with additive content of type F dan D of 0.6% and 0,15% of the cement weight. Optimum compressive strength is achieved when the curing process is done using the soaking method. Key words: critical path, formwork, chemical additives, compressive strength, soaking method.
Stabilitas Lereng Timbunan Sta. 24+100 Jalan Akses Pulau Balang Menggunakan GeoStudio Juandra Hartono; Muhammad Saleh; Gitaning Primaswari
Jurnal Inovasi Konstruksi Vol 1, No 1 (2022): April
Publisher : Politeknik Pekerjaan Umum

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.56911/jik.v1i1.18

Abstract

Riset ini membahas tentang permasalahan lereng timbunan jalan akses pulau balang yang berlokasi di Penajam Paser Utara (PPU) Kalimantan Timur. Pada lereng timbunan area Sta. 24+100 sisi kanan terdapat longsoran lereng yang disebabkan adanya rembesan air masuk kebadan jalan, selain itu lapisan tanah dasar yang dinilai berupa tanah lunak (soft) dengan muka air tanah yang cukup tinggi berpotensi mengalami longsoran dan mengakibatkan penurunan tanah. Analisa dilakukan menggunakan software Geostudio. Dari hasil analisa lereng timbunan didapat hasil sebagai berikut, pada kondisi terkonsolidasi 1 tahun tanpa penanganan, kondisi lereng masih masuk dalam kriteria desain jangka panjang dengan nilai SF sebesar 1,546 sedangkan pada lereng dengan kondisi hujan didapatkan nilai SF sebesar 1,379. Kondisi ini tidak memenuhi kriteria desain SF jangka panjang (SF Jangka Panjang 1.5).  Pada kondisi lereng terkonsolidasi 1 tahun dengan penangan didapatkan nilai SF lereng sebesar 1,730 sedangkan pada lereng dengan kondisi hujan didapatkan nilai SF sebesar 1,574. Dari hasil analisa dapat diambil kesimpulan bahwa lereng pada kondisi terkonsolidasi 1 tahun dengan penanganan masih masuk dalam kriteria design jangka panjang. Rekomendasi penanganan lereng yang dipilih berupa penanganan dengan counterweight dan cerucuk dibawah timbunan