Dheyaa Alhelal
Northern Technical University

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

Energy Efficient Cluster Based Routing Protocol for Dynamic and Static Nodes in Wireless Sensor Network Salam Al-Khammasi; Dheyaa Alhelal; Nabeel Salih Ali
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 16, No 5: October 2018
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v16i5.9930

Abstract

Power consumption is considered one of the most significant challenges in the wireless network sensors (WSNs). In this paper, an investigation of the power consumption is done by making a comparison between static and dynamic WSNs. We have compared the results of the static network with the results of the dynamic network. Static and dynamic wireless Sensor networks have the same architecture (Homogenous) and proposed protocol. Depending on the suggested protocol, the simulation results show that the energy consumption in the static wireless sensor network was less than the dynamic wireless sensor network. However, moving the sensors in the dynamic WSN present real improvement in delivering packets to the base station. In the proposed routing protocol, transmitting data process is done in a hierarchal way. Cheap sensors are introduced and deploy them intensively to improve the QoS in the network. The final results and the conclusion are reported.
Detection of brain stroke in the MRI image using FPGA Dheyaa Alhelal; Ahmed Khazal Younis; Ruaa H. Ali Al-Mallah
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 19, No 4: August 2021
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v19i4.18988

Abstract

One of the most important difficulties which doctors face in diagnosing is the analysis and diagnosis of brain stroke in magnetic resonance imaging (MRI) images. Brain stroke is the interruption of blood flow to parts of the brain that causes cell death. To make the diagnosis easier for doctors, many researchers have treated MRI images with some filters by using Matlab program to improve the images and make them more obvious to facilitate diagnosis by doctors. This paper introduces a digital system using hardware concepts to clarify the brain stroke in MRI image. Field programmable gate arrays (FPGA) is used to implement the system which is divided into four phases: preprocessing, adjust image, median filter, and morphological filters alternately. The entire system has been implemented based on Zynq FPGA evaluation board. The design has been tested on two MRI images and the results are compared with the Matlab to determine the efficiency of the proposed system. The proposed hardware system has achieved an overall good accuracy compared to Matlab where it ranged between 90.00% and 99.48%.
ASSAS: An automatic smart students attendance system based on normalized cross-correlation Ruaa H. Ali Al-Mallah; Dheyaa Alhelal; Razan Abdulhammed
Bulletin of Electrical Engineering and Informatics Vol 10, No 2: April 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v10i2.2746

Abstract

A smart student attendance system (SSAS) is presented in this paper. The system is divided into two phases: hardware and software. The Hardware phase is implemented based on Arduino's camera while the software phase is achieved by using image processing with face recognition depended on the cross-correlation technique. In comparison with traditional attendance systems, roll call, and sign-in sheet, the proposed system is faster and more reliable (because there is no action needed by a human being who by its nature makes mistakes). At the same time, it is cheaper when compared with other automatic attendance systems. The proposed system provides a faster, cheaper and reachable system for an automatic smart student attendance that monitors and generates attendance report automatically.