Shipun Anuar Hamzah
Universiti Tun Hussein Onn Malaysia

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

IoT-based intelligent irrigation management and monitoring system using arduino Fidaus Kamaruddin; Nik Noordini Nik Abd Malik; Noor Asniza Murad; Nurul Mu’azzah Abdul Latiff; Sharifah Kamilah Syed Yusof; Shipun Anuar Hamzah
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 17, No 5: October 2019
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v17i5.12818

Abstract

Plants, flowers and crops are living things around us that makes our earth more productive and beautiful. In order to growth healthy, they need water, light and nutrition from the soil in order to effect cleaning air naturally and produce oxygen to the world. Therefore, a technology that manage to brilliantly control plants watering rate according to its soil moisture and user requirement is proposed in this paper. The developed system included an Internet of Things (IoT) in Wireless Sensor Network (WSN) environment where it manages and monitors the irrigation system either manually or automatically, depending on the user requirement. This proposed system applied Arduino technology and NRF24L01 as the microprocessor and transceiver for the communication channel, respectively. Smart agriculture and smart lifestyle can be developed by implementing this technology for the future work. It will save the budget for hiring employees and prevent from water wastage in daily necessities.
Wide-band metamaterial perfect absorber through double arrow shape printed on a thin dielectric Siti Adlina Md Ali; Maisarah Abu; Siti Normi Zabri; Shipun Anuar Hamzah
Bulletin of Electrical Engineering and Informatics Vol 10, No 5: October 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v10i5.3154

Abstract

A wide-band metamaterial perfect absorber was introduced. The dual arrow shapes and the ground plane were in between the 0.0035λ TLY-3. Lump element technique was applied to enhance the absorption bandwidth, which was connected between both of the arrow structures. The limitation during fabrication process in using lump element, had seriously restricted its practical applications for microwave absorption. Then, a very thin line was connected between both arrow structures to represent the resistance by lump element which was expected to ease the fabrication process and practical applications as well. Four cases were analyzed: double arrow, double arrow with lump connected, double arrow with lump connected and 9 mm air gap, and thin line connected with 6 mm air gap. The fourth case achieved the highest operational absorbency frequency, which developed about 7.38 GHz (3.87 GHz to 11.25 GHz) approximately to 7.38 GHz. Three resonant frequencies were achieved; 4.17 GHz, 6.09 GHz and 10.30 GHz with perfect absorbency. These properties are expected to be used in practical applications such as satellite and radar communications transmission. These properties of the metamaterial absorber could increase the functionality of the metamaterial absorber to be used in any application especially in reducing radar cross section for stealth application.
High accuracy sensor nodes for a peat swamp forest fire detection using ESP32 camera Shipun Anuar Hamzah; Mohd Noh Dalimin; Mohamad Md Som; Mohd Shamian Zainal; Khairun Nidzam Ramli; Wahyu Mulyo Utomo; Nor Azizi Yusoff
International Journal of Informatics and Communication Technology (IJ-ICT) Vol 11, No 3: December 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijict.v11i3.pp229-239

Abstract

The use of smoke sensors in high-precision and low-cost forest fire detection kits needs to be developed immediately to assist the authorities in monitoring forest fires especially in remote areas more efficiently and systematically. The implementation of automatic reclosing operation allows the fire detector kit to distinguish between real smoke and non-real smoke successfully. This has profitably reduced kit errors when detecting fires and in turn prevent the users from receiving incorrect messages. However, using a smoke sensor with automatic reclosing operation has not been able to optimize the accuracy of identifying the actual smoke due to the working sensor node situation is difficult to predict and sometimes unexpected such as the source of smoke received. Thus, to further improve the accuracy when detecting the presence of smoke, the system is equipped with two digital cameras that can capture and send pictures of fire smoke to the users. The system gives the users choice of three interesting options if they want the camera to capture and send pictures to them, namely request, smoke trigger and movement for security purposes. In all cases, users can request the system to send pictures at any time. The system equipped with this camera shows the accuracy of smoke detection by confirming the actual smoke that has been detected through images sent in the user’s Telegram channel and on the Graphical User Interface (GUI) display. As a comparison of the system before and after using this camera, it was found that the system that uses the camera gives advantage to the users in monitoring fire smoke more effectively and accurately.