Andre Herviant Juliano
Universitas Sriwijaya

Published : 2 Documents Claim Missing Document
Claim Missing Document

Found 2 Documents

Neural network technique with deep structure for improving author homonym and synonym classification in digital libraries Firdaus Firdaus; Siti Nurmaini; Varindo Ockta Keneddi Putra; Annisa Darmawahyuni; Reza Firsandaya Malik; Muhammad Naufal Rachmatullah; Andre Herviant Juliano; Tio Artha Nugraha
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 19, No 4: August 2021
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v19i4.18878


Author name disambiguation (AND), also recognized as name-identification, has long been seen as a challenging issue in bibliographic data. In other words, the same author may appear under separate names, synonyms, or distinct authors may have similar to those referred to as homonyms. Some previous research has proposed AND problem. To the best of our knowledge, no study discussed specifically synonym and homonym, whereas such cases are the core in AND topic. This paper presents the classification of non-homonym-synonym, homonym-synonym, synonym, and homonym cases by using the DBLP computer science bibliography dataset. Based on the DBLP raw data, the classification process is proposed by using deep neural networks (DNNs). In the classification process, the DBLP raw data divided into five features, including name, author, title, venue, and year. Twelve scenarios are designed with a different structure to validate and select the best model of DNNs. Furthermore, this paper is also compared DNNs with other classifiers, such as support vector machine (SVM) and decision tree. The results show DNNs outperform SVM and decision tree methods in all performance metrics. The DNNs performances with three hidden layers as the best model, achieve accuracy, sensitivity, specificity, precision, and F1-score are 98.85%, 95.95%, 99.26%, 94.80%, and 95.36%, respectively. In the future, DNNs are more performing with the automated feature representation in AND processing.
Author identification in bibliographic data using deep neural networks Firdaus Firdaus; Siti Nurmaini; Reza Firsandaya Malik; Annisa Darmawahyuni; Muhammad Naufal Rachmatullah; Andre Herviant Juliano; Tio Artha Nugraha; Varindo Ockta Keneddi Putra
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 19, No 3: June 2021
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v19i3.18877


Author name disambiguation (AND) is a challenging task for scholars who mine bibliographic information for scientific knowledge. A constructive approach for resolving name ambiguity is to use computer algorithms to identify author names. Some algorithm-based disambiguation methods have been developed by computer and data scientists. Among them, supervised machine learning has been stated to produce decent to very accurate disambiguation results. This paper presents a combination of principal component analysis (PCA) as a feature reduction and deep neural networks (DNNs), as a supervised algorithm for classifying AND problems. The raw data is grouped into four classes, i.e., synonyms, homonyms, homonyms-synonyms, and non-homonyms-synonyms classification. We have taken into account several hyperparameters tuning, such as learning rate, batch size, number of the neuron and hidden units, and analyzed their impact on the accuracy of results. To the best of our knowledge, there are no previous studies with such a scheme. The proposed DNNs are validated with other ML techniques such as Naïve Bayes, random forest (RF), and support vector machine (SVM) to produce a good classifier. By exploring the result in all data, our proposed DNNs classifier has an outperformed other ML technique, with accuracy, precision, recall, and F1-score, which is 99.98%, 97.98%, 97.86%, and 99.99%, respectively. In the future, this approach can be easily extended to any dataset and any bibliographic records provider.