Ayman Hindi
Najran University

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

The impact of integration of solar farms on the power losses, voltage profile and short circuit level in the distribution system Abdallah R Alzyoud; Ali S Dalabeeh; Ayman Y. Al-Rawashdeh; Anwar Al-Mofleh; Ahmad Allabadi; Tamadher Almomani; Ayman Hindi
Bulletin of Electrical Engineering and Informatics Vol 10, No 3: June 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v10i3.1909

Abstract

This paper introduces a study of utilizing solar energy farm that is integrated with the national grid based on intensive data availability of solar energy in Jordan. The study discusses the impact and the ability of integrating solar farms into the national grid of Jordan. The study considerd different cases and, various power system studies for connection points of solar farms to medium voltage networks. Among these studies are short circuit level, voltage profile and power losses. The main objective of the study is to analyze impacts of integration of solar farms on distribution systems of the chosen areas. Photovoltaic (PV) system with varying penetration levels are integrated at different locations (connection points) into the distribution network. Calculations are performed and models are built using actual data obtained from the Jordanian power grid with PV interconnection. The effect of the short circuit level, voltage profile and power losses in the distribution system are also analyzed. Finally, the most suitable method of connecting the solar farm to the national power network is recommended.
Increasing the required slip range of wound induction generator in wind power systems Ali Dalabeeh; Al-Mofleh Anwar; Tariq M. Younes; Ayman Al-Rawashdeh; Ayman Hindi
Bulletin of Electrical Engineering and Informatics Vol 9, No 2: April 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (300.266 KB) | DOI: 10.11591/eei.v9i2.1795

Abstract

Eddy currents losses in the rotor in high power generators do not allow operators, under high values of slip, to regulate voltage and control of reactive power flow. The paper presents a method that can accurately estimate the eddy current losses in electric machines with a less complicated procedure. The suggested method allows researchers to analyze and reduce the losses, and consequently, to improve the wind turbine induction generators efficiencies. The given approach, based on the conventional electric machine theory and the parameters supplied by the manufacturers, predicts the eddy current losses theoretically without the need of the measured material loss data or BH curve. Increasing the range of slip variation of induction motor can be achieved by using a rotor of two layers in the radial direction with different parameters. The first layer is a laminated layer of height (h), and the second is a solid (the rotor yoke). The computation of eddy current losses is useful to change the design of the machine to minimize the losses. This paper presents a detailed modeling of the effect parameters on the eddy current losses in wind turbine induction generator.