M. Manap
Universiti Teknikal Malaysia Melaka (UTeM)

Published : 6 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 6 Documents
Search

Harmonic Contribution Analysis of Electric Arc Furnace by Using Spectrogram M. H. Jopri; A. R. Abdullah; M. Manap; T. Sutikno; M. R. Ab Ghani
Bulletin of Electrical Engineering and Informatics Vol 7, No 2: June 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (788.555 KB) | DOI: 10.11591/eei.v7i2.1187

Abstract

In this paper, spectrogram, a fast and accurate technique is introduced for the analysis of the contribution. Based on a rule-based classifier and the threshold settings that referred to the IEEE Standard 1159 2009, the analysis of the harmonic and interharmonic contribution of EAF are carried out successfully. Moreover, the impact of contribution is measured using total harmonic distortion (THD) and total non-harmonic distortion (TnHD). In addition, spectrogram also gives 100 percent correct detection and able to analyze the contribution impact. It is proven that the proposed method is accurate, fast and cost efficient for analyzing the impact of harmonic and interharmonic of EAF.
An Identification of Multiple Harmonic Sources in a Distribution System by Using Spectrogram M. H. Jopri; A. R. Abdullah; M. Manap; T. Sutikno; M. R. Ab Ghani
Bulletin of Electrical Engineering and Informatics Vol 7, No 2: June 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1117.171 KB) | DOI: 10.11591/eei.v7i2.1188

Abstract

The identification of multiple harmonic sources (MHS) is vital to identify the root causes and the mitigation technique for a harmonic disturbance. This paper introduces an identification technique of MHS in a power distribution system by using a time-frequency distribution (TFD) analysis known as a spectrogram. The spectrogram has advantages in term of its accuracy, a less complex algorithm, and use of low memory size compared to previous methods such as probabilistic and harmonic power flow direction. The identification of MHS is based on the significant relationship of spectral impedances, which are the fundamental impedance (Z1) and harmonic impedance (Zh) that estimate the time-frequency representation (TFR). To verify the performance of the proposed method, an IEEE test feeder with several different harmonic producing loads is simulated. It is shown that the suggested method is excellent with 100% correct identification of MHS. The method is accurate, fast and cost-efficient in the identification of MHS in power distribution arrangement.
Harmonic Contribution Analysis of Electric Arc Furnace by Using Spectrogram M. H. Jopri; A. R. Abdullah; M. Manap; T. Sutikno; M. R. Ab Ghani
Bulletin of Electrical Engineering and Informatics Vol 7, No 2: June 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (788.555 KB) | DOI: 10.11591/eei.v7i2.1187

Abstract

In this paper, spectrogram, a fast and accurate technique is introduced for the analysis of the contribution. Based on a rule-based classifier and the threshold settings that referred to the IEEE Standard 1159 2009, the analysis of the harmonic and interharmonic contribution of EAF are carried out successfully. Moreover, the impact of contribution is measured using total harmonic distortion (THD) and total non-harmonic distortion (TnHD). In addition, spectrogram also gives 100 percent correct detection and able to analyze the contribution impact. It is proven that the proposed method is accurate, fast and cost efficient for analyzing the impact of harmonic and interharmonic of EAF.
An Identification of Multiple Harmonic Sources in a Distribution System by Using Spectrogram M. H. Jopri; A. R. Abdullah; M. Manap; T. Sutikno; M. R. Ab Ghani
Bulletin of Electrical Engineering and Informatics Vol 7, No 2: June 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1117.171 KB) | DOI: 10.11591/eei.v7i2.1188

Abstract

The identification of multiple harmonic sources (MHS) is vital to identify the root causes and the mitigation technique for a harmonic disturbance. This paper introduces an identification technique of MHS in a power distribution system by using a time-frequency distribution (TFD) analysis known as a spectrogram. The spectrogram has advantages in term of its accuracy, a less complex algorithm, and use of low memory size compared to previous methods such as probabilistic and harmonic power flow direction. The identification of MHS is based on the significant relationship of spectral impedances, which are the fundamental impedance (Z1) and harmonic impedance (Zh) that estimate the time-frequency representation (TFR). To verify the performance of the proposed method, an IEEE test feeder with several different harmonic producing loads is simulated. It is shown that the suggested method is excellent with 100% correct identification of MHS. The method is accurate, fast and cost-efficient in the identification of MHS in power distribution arrangement.
Harmonic Contribution Analysis of Electric Arc Furnace by Using Spectrogram M. H. Jopri; A. R. Abdullah; M. Manap; T. Sutikno; M. R. Ab Ghani
Bulletin of Electrical Engineering and Informatics Vol 7, No 2: June 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (788.555 KB) | DOI: 10.11591/eei.v7i2.1187

Abstract

In this paper, spectrogram, a fast and accurate technique is introduced for the analysis of the contribution. Based on a rule-based classifier and the threshold settings that referred to the IEEE Standard 1159 2009, the analysis of the harmonic and interharmonic contribution of EAF are carried out successfully. Moreover, the impact of contribution is measured using total harmonic distortion (THD) and total non-harmonic distortion (TnHD). In addition, spectrogram also gives 100 percent correct detection and able to analyze the contribution impact. It is proven that the proposed method is accurate, fast and cost efficient for analyzing the impact of harmonic and interharmonic of EAF.
An Identification of Multiple Harmonic Sources in a Distribution System by Using Spectrogram M. H. Jopri; A. R. Abdullah; M. Manap; T. Sutikno; M. R. Ab Ghani
Bulletin of Electrical Engineering and Informatics Vol 7, No 2: June 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1117.171 KB) | DOI: 10.11591/eei.v7i2.1188

Abstract

The identification of multiple harmonic sources (MHS) is vital to identify the root causes and the mitigation technique for a harmonic disturbance. This paper introduces an identification technique of MHS in a power distribution system by using a time-frequency distribution (TFD) analysis known as a spectrogram. The spectrogram has advantages in term of its accuracy, a less complex algorithm, and use of low memory size compared to previous methods such as probabilistic and harmonic power flow direction. The identification of MHS is based on the significant relationship of spectral impedances, which are the fundamental impedance (Z1) and harmonic impedance (Zh) that estimate the time-frequency representation (TFR). To verify the performance of the proposed method, an IEEE test feeder with several different harmonic producing loads is simulated. It is shown that the suggested method is excellent with 100% correct identification of MHS. The method is accurate, fast and cost-efficient in the identification of MHS in power distribution arrangement.