Claim Missing Document
Check
Articles

Found 5 Documents
Search

Notice of Retraction: Comparative evaluation of SiC/GaN “MOSFET” transistors under different switching conditions Ghanim Thiab Hasan; Ali Hlal Mutlaq; Kamil Jadu Ali
Bulletin of Electrical Engineering and Informatics Vol 11, No 2: April 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v11i2.3445

Abstract

Notice of Retraction-----------------------------------------------------------------------After careful and considered review of the content of this paper by a duly constituted expert committee, this paper has been found to be in violation of IAES's Publication Principles.We hereby retract the content of this paper. Reasonable effort should be made to remove all past references to this paper.The presenting author of this paper has the option to appeal this decision by contacting beei@iaescore.com.-----------------------------------------------------------------------The aim of this paper is to conduct a mutual comparison of switching energy losses in cascade gallium nitride (GaN) and silicon "super junction" MOSFET” transistor, in both cases designed for a maximum operating voltage of (650 V). For the analysis of switching characteristics of transistors used double pulse test method by using detailed SPICE simulation model. Data on transient on and off processes were generated using the “LTspice” simulation package in a wide range of drain currents with two different gate resistance values of the tested transistors. The total energy losses in the GaN have been simulated during one transistor at (on and off cycle). The obtained results indicate that the superior switching characteristics of GaN devices for a drain current of (30 A) is five to eight times less than the switching characteristics of silicon “MOSFET” transistor when compared to silicon components, especially during operation of transistors with high drain currents.
Investigate the optimal power system by using hybrid optimization of multiple energy resources software Ghanim Thiab Hasan; Ali Hlal Mutlaq; Mohammad Omar Salih
Indonesian Journal of Electrical Engineering and Computer Science Vol 26, No 1: April 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v26.i1.pp9-19

Abstract

Increasing the effects of global pollution and the availability of renewable energy sources has push many countries to use reasonable energy sources such as wind and solar energy. This paper presents a case study of evaluating a hybrid renewable energy system by using a hybrid optimization of multiple energy resources (HOMER) software program based on the entered data available from the net for the considered location. The hybrid system consisting of a wind turbine, a photovoltaic system, a battery and a diesel generator. The simulation results are presented in a graphical curves n HOMER software. The obtained results indicate that by using the HOMER simulation program, the optimal design of the hybrid electrical power system for the considered location can be achieved which can help the designer to decide the types and number of the competent required for conducting the intending hybrid electrical power system which results in optimum output power in addition to reducing the overall operating costs.
Analysis the efficiency of multi-input-multi-output (MIMO) transmit receive systems Ali Hlal Mutlaq; Mohammed Ayad Saad; Faris Hassan Tata; Ghanim Thiab Hasan
Indonesian Journal of Electrical Engineering and Computer Science Vol 29, No 1: January 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v29.i1.pp190-196

Abstract

Transmit antennas are chosen in multi-input-multi-output (MIMO) systems. Effective in improving system capacity while lowering RF connection costs and simplifying the system. Complete method with greatest accuracy for joint transmits and receive antenna selection (JTRAS), capable of scanning all subsets of both transmitting and receiving antennas for the optimal solution. However, when as the number of antennas but also computational complexity increase grows too great, limiting its application. Antennas are coded fractionally channel capacity maximizing coding is used as a basic criterion in this paper, and an intelligent algorithm Particle swarm algorithm, generic algorithm are used to pick antennas. The simulation results show that both algorithms are capable of performing antenna selection.
Measurement and analysis of conductor surface temperature in dependence of current variation Ali Hlal Mutlaq; Mahmood Ali Ahmed; Diadeen Ali Hameed; Ghanim Thiab Hasan
Bulletin of Electrical Engineering and Informatics Vol 11, No 5: October 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v11i5.3915

Abstract

The reliability and service life of power cables is closely related to the cable ampacity and temperature rise in the power cable. In a conductor carries AC current, complex processes may appear, which directly affect the temperature of the conductor surface. So, to keep a conductor in a good state, it is necessary to maintain the conductor temperature in a acceptable value. In this paper, a procedure for measuring the temperature of conductor surface and the corresponding numerical processing of measurement results has been presented. The measurement of the temperature probe characteristics and the temperature measurement on the surface of the conductor, both required the use of certain numerical methods, such as interpolation and fitting of the measured values in time diagrams. The procedure was applied to three copper conductors with different cross section area and one aluminum conductor and the final results are presented graphically, in the form of time diagrams.
Modeling of magnetic sensitivity of the metal-oxide-semiconductor field-effect transistor with double gates Ghanim Thiab Hasan; Ali Hlal Mutlaq; Kamil Jadu Ali; Mohammed Ayad Saad
International Journal of Electrical and Computer Engineering (IJECE) Vol 13, No 3: June 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v13i3.pp2632-2639

Abstract

In this paper, we investigated the effect of magnetic field on the carrier transport phenomenon in metal-oxide-semiconductor field-effect transistor (MOSFET) with double gates by examining the behavior of the semiconductor under the Lorentz force and a constant magnetic field. Various behaviors within the channel have been simulated including the potential distribution, conduction and valence bands, total current density, total charge density and the magnetic field. The results obtained indicate that this modulation affects the electrical characteristics of the device such as on-state current (ION), subthreshold leakage current (IOF), threshold voltage (VTh), and the Hall voltage (VH) is induced by the magnetic field. The change in threshold voltage caused by the magnetic field has been observed to affect the switching characteristics of the device, such as speed and power loss, as well as the threshold voltage VTh and (ION/IOF) ratio. Note that it is reduced by 10-3 V. 102 for magnetic fields of ±6 and ±5.5 tesla respectively.