Norashidah Md. Din
Universiti Tenaga Nasional

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

Design of a cell selection mechanism to mitigate interference for cell-edge macro users in femto-macro heterogeneous network Shapina Abdullah; Norashidah Md. Din; Shamsul J. Elias; Adam Wong Yoon Khang; Roshidi Din; Rosmadi Bakar
Bulletin of Electrical Engineering and Informatics Vol 8, No 1: March 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (526.68 KB) | DOI: 10.11591/eei.v8i1.1433

Abstract

The Femto-Macro heterogeneous network is a promising solution to improve the network capacity and coverage in mobile network. However interference may rise due to femtocell deployment nearby to macro user equipment (MUE) within macrocell network coverage. Femtocell offers main priority in resource allocation to its subscribed femto user equipment (FUE) rather than unsubscribed MUE. MUEs will suffer severe interference when they are placed near or within the femtocell area range especially at the cell edge. This phenomenon occurs due to the distance is far from its serving macro base station (MBS) to receive good signal strength. This paper presents a design of cell selection scheme for cell-edge MUE to select an optimal femto base station (FBS) as its primary serving cell in physical resource block allocation. In this study, the proposed cell selection consists of four main elements: measuring the closest FBS distance, Signal to Interference-plus- Noise-Ratio (SINR), physical resource block (PRB) availability and node density level for the selected base station. The main goal is to ensure celledge MUE has priority fairly with FUE in physical resource block allocation per user bandwidth demand to mitigate interference. Hence, the cell-edge MUE has good experienced on receiving an adequate user data rate to improve higher network throughput.
Design of a cell selection mechanism to mitigate interference for cell-edge macro users in femto-macro heterogeneous network Shapina Abdullah; Norashidah Md. Din; Shamsul J. Elias; Adam Wong Yoon Khang; Roshidi Din; Rosmadi Bakar
Bulletin of Electrical Engineering and Informatics Vol 8, No 1: March 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1249.128 KB) | DOI: 10.11591/eei.v8i1.1433

Abstract

The Femto-Macro heterogeneous network is a promising solution to improve the network capacity and coverage in mobile network. However interference may rise due to femtocell deployment nearby to macro user equipment (MUE) within macrocell network coverage. Femtocell offers main priority in resource allocation to its subscribed femto user equipment (FUE) rather than unsubscribed MUE. MUEs will suffer severe interference when they are placed near or within the femtocell area range especially at the cell edge. This phenomenon occurs due to the distance is far from its serving macro base station (MBS) to receive good signal strength. This paper presents a design of cell selection scheme for cell-edge MUE to select an optimal femto base station (FBS) as its primary serving cell in physical resource block allocation. In this study, the proposed cell selection consists of four main elements: measuring the closest FBS distance, Signal to Interference-plus-Noise-Ratio (SINR), physical resource block (PRB) availability and node density level for the selected base station. The main goal is to ensure cell-edge MUE has priority fairly with FUE in physical resource block allocation per user bandwidth demand to mitigate interference. Hence, the cell-edge MUE has good experienced on receiving an adequate user data rate to improve higher network throughput.
Design of a cell selection mechanism to mitigate interference for cell-edge macro users in femto-macro heterogeneous network Shapina Abdullah; Norashidah Md. Din; Shamsul J. Elias; Adam Wong Yoon Khang; Roshidi Din; Rosmadi Bakar
Bulletin of Electrical Engineering and Informatics Vol 8, No 1: March 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1249.128 KB) | DOI: 10.11591/eei.v8i1.1433

Abstract

The Femto-Macro heterogeneous network is a promising solution to improve the network capacity and coverage in mobile network. However interference may rise due to femtocell deployment nearby to macro user equipment (MUE) within macrocell network coverage. Femtocell offers main priority in resource allocation to its subscribed femto user equipment (FUE) rather than unsubscribed MUE. MUEs will suffer severe interference when they are placed near or within the femtocell area range especially at the cell edge. This phenomenon occurs due to the distance is far from its serving macro base station (MBS) to receive good signal strength. This paper presents a design of cell selection scheme for cell-edge MUE to select an optimal femto base station (FBS) as its primary serving cell in physical resource block allocation. In this study, the proposed cell selection consists of four main elements: measuring the closest FBS distance, Signal to Interference-plus-Noise-Ratio (SINR), physical resource block (PRB) availability and node density level for the selected base station. The main goal is to ensure cell-edge MUE has priority fairly with FUE in physical resource block allocation per user bandwidth demand to mitigate interference. Hence, the cell-edge MUE has good experienced on receiving an adequate user data rate to improve higher network throughput.