Claim Missing Document
Check
Articles

Found 4 Documents
Search

Data Driven Building Electricity Consumption Model Using Support Vector Regression FX Nugroho Soelami; Putu Handre Kertha Utama; Irsyad Nashirul Haq; Justin Pradipta; Edi Leksono; Meditya Wasesa
Journal of Engineering and Technological Sciences Vol. 53 No. 3 (2021)
Publisher : Institute for Research and Community Services, Institut Teknologi Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5614/j.eng.technol.sci.2021.53.3.13

Abstract

Every building has certain electricity consumption patterns that depend on its usage. Building electricity budget planning requires a consumption forecast to determine the baseline electricity load and to support energy management decisions. In this study, an algorithm to model building electricity consumption was developed. The algorithm is based on the support vector regression (SVR) method. Data of electricity consumption from the past five years from a selected building object in ITB campus were used. The dataset unexpectedly exhibited a large number of anomalous points. Therefore, a tolerance limit of hourly average energy consumption was defined to obtain good quality training data. Various tolerance limits were investigated, that is 15% (Type 1), 30% (Type 2), and 0% (Type 0). The optimal model was selected based on the criteria of mean absolute percentage error (MAPE) < 20% and root mean square error (RMSE) < 10 kWh. Type 1 data was selected based on its performance compared to the other two. In a real implementation, the model yielded a MAPE value of 14.79% and an RMSE value of 7.48 kWh when predicting weekly electricity consumption. Therefore, the Type 1 data-based model could satisfactorily forecast building electricity consumption.
Support Vector Machine to Predict Electricity Consumption in the Energy Management Laboratory Azam Zamhuri Fuadi; Irsyad Nashirul Haq; Edi Leksono
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 5 No 3 (2021): Juni 2021
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (764.147 KB) | DOI: 10.29207/resti.v5i3.2947

Abstract

Predicted electricity consumption is needed to perform energy management. Electricity consumption prediction is also very important in the development of intelligent power grids and advanced electrification network information. we implement a Support Vector Machine (SVM) to predict electrical loads and results compared to measurable electrical loads. Laboratory electrical loads have their own characteristics when compared to residential, commercial, or industrial, we use electrical load data in energy management laboratories to be used to be predicted. C and Gamma as searchable parameters use GridSearchCV to get optimal SVM input parameters. Our prediction data is compared to measurement data and is searched for accuracy based on RMSE (Root Square Mean Error), MAE (Mean Absolute Error) and MSE (Mean Squared Error) values. Based on this we get the optimal parameter values C 1e6 and Gamma 2.97e-07, with the result RSME (Root Square Mean Error) ; 0.37, MAE (meaning absolute error); 0.21 and MSE (Mean Squared Error); 0.14.
Pemodelan Manajemen Energi Microgrid pada Sistem Bangunan Cerdas FX Nugroho Soelami; Edi Leksono; Irsyad Nashirul Haq; Justin Pradipta; Putu Handre Kertha Utama; Aretha Fieradiella Pahrevi; Faizatuzzahrah Rahmaniah; Meditya Wasesa
Jurnal Nasional Teknik Elektro dan Teknologi Informasi Vol 9 No 4: November 2020
Publisher : Departemen Teknik Elektro dan Teknologi Informasi, Fakultas Teknik, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1528.314 KB) | DOI: 10.22146/jnteti.v9i4.488

Abstract

From the electricity system point of view, smart buildings can be seen as an integration of a microgrid electricity network that connects solar PV, storage system, and building load distribution. The operation condition of the microgrid needs to be evaluated and optimized to obtain efficient and reliable performance. This contribution presents an energy management modeling for the microgrid optimization process in a smart building system. The energy sources connected to the microgrid are solar PV, battery storage system, and the PLN (utility) grid. Combinations of load scenarios are evaluated, which consists of building a lighting system, water pump, dan HVAC system. The optimization goal is to find the optimal estimation of Self Consumption (SC) and Self Sufficiency (SS) values. A simulation result before the optimization shows that the system is operating with SC of 63.2% and SS of 96.32%. After the optimization, the values become SC = 84.68% and SS = 83.27%. Therefore, the amount of energy sourced from the Solar PV system is increased and the microgrid is working more optimally.
Pemodelan dan Simulasi MPPT pada Sistem PLTS Menggunakan Metode DNN Edi Leksono; Robi Sobirin; Reza Fauzi Iskandar; Putu Handre Kertha Utama; Mochammad Iqbal Bayeqi; Muhammad Fatih Hasan; Irsyad Nashirul Haq; Justin Pradipta
Jurnal Nasional Teknik Elektro dan Teknologi Informasi Vol 12 No 4: November 2023
Publisher : Departemen Teknik Elektro dan Teknologi Informasi, Fakultas Teknik, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jnteti.v12i4.7931

Abstract

The maximum power point tracking (MPPT) feature in solar power plants is an essential function in increasing the efficiency of electricity production. The incremental conductance (InC) algorithm controls MPPT, aiming to maximize the output power of photovoltaic (PV) panels and increase the efficiency of the solar power plant system. Even though the InC algorithm is simple and practical, this algorithm tends to lack support in precise switching speeds, is sensitive to the measurement precision level, and is inadequate to eliminate power oscillations due to tight switching cycles. The deep neural network (DNN) algorithm has the potential to answer the challenges of MPPT dynamics. DNN’s learning capabilities enable the controller to better recognize the dynamics of shifts in maximum power values, thereby providing more appropriate contact actuation. The input for the DNN is the duty ratio produced by the InC algorithm. The DNN algorithm was implemented on three DC-to-DC power converter topologies, namely buck, boost, and buck-boost, to determine MPPT performance under standard tests and actual environmental conditions. DNN has demonstrated the ability to reduce oscillation effects, speed up steady-state time, and increase efficiency. In actual environmental conditions, the results showed that the buck converter consistently produced the highest power, followed by the boost and the buck-boost converters. Regarding performance efficiency, the buck converter achieved the highest efficiency at 94.58%, followed by the boost converter at 90.79%. Conversely, the buck-boost converter had the lowest performance efficiency, with an efficiency of 79.34%.