Claim Missing Document
Check
Articles

Found 2 Documents
Search

Experimental Study on Thermal Performance of Loop Heat Pipe with Flat-Rectangular Evaporator Under Gravity Assisted Condition Hien Phuoc Huynh; Htoo Zin Kyaw; Keishi Kariya; Akio Miyara
EPI International Journal of Engineering Vol 1 No 2 (2018): Volume 1 Number 2, August 2018 with Special Issue on Railway Engineering
Publisher : Center of Techonolgy (COT), Engineering Faculty, Hasanuddin University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25042/epi-ije.082018.06

Abstract

In company with extreme developments of electronic devices, there are some unavoidable challenges to the conventional cooling methods such as high heat dissipation, limitation of cooling space, reliable operation as well as saving energy consumption. Therefore, the necessity of studying on new or how to improve the existing technologies is undoubted. Among various methodologies, the loop heat pipe (LHP) whose operation principle base on phase changing process, can be considered as one of the potential solutions of modern electronics cooling. This paper introduces the experimental investigation on the thermal performance of a flat-rectangular evaporator LHP with sintered stainless-steel wick when functioning under gravity assisted condition. Working fluid of this LHP was water. The present LHP could maintain stable operation in the range of heating power from 50 W to 520 W and keep the temperature on the heater’s top surface at 85oC, commonly recommended as the limitation temperature of electronics, when heating power reaches value 350 W (129.6 kW/m2). Besides, when turning the heater off, it took about 15 minutes for the LHP to cool the heating block from 102oC to 37oC. In addition, an assumption of the boiling heat transfer is introduced in this paper to explain the performance of evaporator at different heat flux conditions of the experiment.
Consideration on Local Heat Transfer Measurement of Plate Heat Exchanger with the Aid of Simulation Thiha Tun; Keishi Kariya; Akio Miyara
EPI International Journal of Engineering Vol 3 No 1 (2020): Volume 3 Number 1, February 2020
Publisher : Center of Techonolgy (COT), Engineering Faculty, Hasanuddin University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25042/epi-ije.022020.01

Abstract

Abstract In this study, the local heat transfer coefficient of boiling and condensation were obtained by an experimental set up using vertical stainless-steel type brazed plate heat exchanger. A series of 8 vertical brazed plates are used as the major components of the test section of experimental set up and are fabricated into layers so that flow channels are formed between the plates through which water and refrigerants are flowing through. The experiments are carried out at the mass flux of 10, 20 and 50 kg/(m2žs). In order to measure the local heat transfer coefficient, flat stainless-steel plates of 10 mm in thickness are installed attached to the vertical plates onto which the thermocouples are positioned to measure the temperature distributions at the surface of the plates. By performing the experiment, the direction of the heat flux across the plate tends to deviate downward especially at the lower part of the plate due to the non-uniform temperature distributions across the plate. The results are analyzed and validated at the mass flux of 10 kg/(m2žs) by the aid of the simulation tool by using ANSYS FLUENT 19.1 to estimate the local heat transfer coefficient and the heat flux across the plate. The analysis result shows that the simulation model can assist to track the deviation of the direction of the heat flow from the horizontal direction across the plate and the experimental results of the local heat transfer coefficient have similar trends with that of the simulation results.