Yohannes Sardjono
PSTA - BATAN

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

MODELING THE RADIATION SHIELDING OF BORON NEUTRON CAPTURE THERAPY BASED ON 2.4 MEV D-D NEUTRON GENERATOR FACILITY Muhammad Mu’Alim; Yohannes Sardjono
JURNAL TEKNOLOGI REAKTOR NUKLIR TRI DASA MEGA Vol 20, No 1 (2018): Februari 2018
Publisher : Pusat Teknologi Dan Keselamatan Reaktor Nuklir (PTKRN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (722.449 KB) | DOI: 10.17146/tdm.2018.20.1.3633

Abstract

Radiation shield at Boron Neutron Capture Therapy (BNCT) facility based on D-D Neutron Generator 2.4 MeV has been modified with pre-designed beam shaping assembly (BSA). Modeling includes the material and thickness used in the radiation shield. This radiation shield is expected to protect workers from radiation doses rate that is not exceed 20 mSv·year-1 of dose limit values. The selected materials are barite, paraffin, polyethylene and lead. Calculations were performed using the MCNPX program with tally F4 to determine the dose rate coming out of the radiation shield not exceeding the radiation dose rate of 10 μSv·hr-1. Design 3 was chosen as the recommended model of the four models that have been made. The 3rd shield design uses a 100 cm thickness of barite concrete as primamary layer to surrounding 100 cm x 100 cm x 166.4 cm room, and a 40 cm borated polyethylene surrounding the barite concrete material. Then 10 cm barite concrete and 10 cm of borated polyethylene are added to reduce the primary radiation straight from the BSA after leaving the main layer. The largest dose rate was 4.58 μSv·h-1 on cell 227 and average radiation dose rate 0.65 μSv·hr-1. The dose rates are lower than the lethal dose that is allowed by BAPETEN for radiation worker lethal dose.Keywords: Radiation shield, tally, radiation dose rate, BSA, BNCT PEMODELAN PERISAI RADIASI PADA FASILITAS BORON NEUTRON CAPTURE THERAPY BERBASIS GENERATOR NEUTRON D-D 2,4 MeV. Telah dimodelkan perisai radiasi pada fasilitas Boron Neutron Capture Therapy (BNCT) berbasis reaksi D-D pada Neutron Generator 2,4 MeV dengan Beam Shaping Assembly (BSA) yang telah didesain sebelumnya. Pemodelan ini dilakukan untuk memperoleh suatu desain perisai radiasi untuk fasilitas BNCT berbasis generator neutron 2,4 MeV. Pemodelan dilakukan dengan cara memvariasikan bahan dan ketebalan perisasi radiasi. Bahan yang dipilih adalah beton barit, parafin, polietilen terborasi dan timbal. Perhitungan dilakukan menggunakan program MCNPX dengan tally F4 untuk menentukan laju dosis yang keluar dari perisai radiasi. Desain periasi radiasi dinyatakan optimal jika radiasi yang dihasilkan diluar perisai radiasi tidak melebihi Nilai Batas Dosis (NBD) yang telah ditentukan oleh BAPETEN. Hasilnya, diperoleh suatu desain perisai radiasi menggunakan lapisan utama beton barit setebal 100 cm yang mengelilingi ruangan 100 cm x 100 cm x 166,4 cm dan polietilen terborasi 40 cm yang mengelilingi bahan beton barit. Kemudian ditambahkan beton barit 10 cm dan polietilen terborasi 10 cm untuk mengurangi radiasi primer yang lurus dari BSA setelah keluar dari lapisan utama. Laju dosis terbesar adalah 4,58 μSv·jam-1 pada sel 227 dan laju dosis rata-rata yang dihasilkan adalah sebesar 0,65 µSv·jam-1. Nilai laju dosis tersebut masih dibawah ambang batas NBD yang diperbolehkan oleh BAPETEN untuk pekerja radiasi.Kata kunci: Perisai radiasi, tally, laju dosis radiasi, BSA, BNCT
CALCULATION OF BNCT DOSIMETRY FOR BRAIN CANCER BASED ON KARTINI RESEARCH REACTOR USING PHITS CODE Suhendra Gunawan Ntoy; Yohannes Sardjono
JURNAL TEKNOLOGI REAKTOR NUKLIR TRI DASA MEGA Vol 19, No 3 (2017): Oktober 2017
Publisher : Pusat Teknologi Dan Keselamatan Reaktor Nuklir (PTKRN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (583.985 KB) | DOI: 10.17146/tdm.2017.19.3.3634

Abstract

Cancer is a dangerous disease caused by the growth of a mass of cells that are unnatural and uncontrollable. Glioblastoma, also called as glioblastoma multiforme (GBM), is one of dangerous brain cancer. The dismal prognosis associated with glioblastoma is attributable not only to its aggressive and infiltrative behavior, but also to its location typically deep in the parenchyma of the brain. In resolving this chalenge, the BNCT method can be a solution. This study aims to calculate BNCT dosimetry in different of cancer positions and irradiation geometries using PHITS code. The results show that the deeper the cancers target at brain the slower the total absorbed dose rate of cancer target. It takes a longer treatment time. Based on the treatment time and total absorbed dose rate of cancer target, the TOP irradiation geometry is an appropriate choice in treating the cancer target in this case. To achieve the histopathological cure of GBM at the primary site, the absorbed dose of brain was calculated to be 1.07 Gy and 1.64 Gy for the LLAT and PA irradiation geometry, respectively. While, for cancer position of 3 cm, 5 cm, 7.15 cm, 9 cm, and 11 cm, the absorbed dose of brain is 0.25 Gy, 0.48 Gy, 0.85 Gy, 1.33 Gy, and 2.01 Gy, respectively. In addition to the stochastic effect, it was found also deterministic effects that may be produced such as cataracts.Keywords: BNCT dosimetry; GBM; brain cancer cases; PHITS; MIRD phantom PERHITUNGAN DOSIMETRI BNCT PADA KANKER OTAK BERBASIS REAKTOR RISET KARTINI MENGGUNAKAN PROGRAM PHITS. Kanker merupakansalahsatu penyakit berbahaya yang diakibatkan oleh tumbuhnya sekumpulan massa sel-sel yang tidak wajar dan tidak terkendali. Salah satu penyakit kanker otak yang berbahaya adalah Glioblastoma atau yang biasa disebut Glioblastoma Multiforme (GBM). Prognosis suram terkait dengan GBM tidak hanya untuk perilaku agresif dan infiltrasi, tetapi juga terhadaplokasi yang jauh di dalam parenkim otak. Untuk menjawab hal tersebut, Boron Neutron Capture Therapy (BNCT) dapat menjadi solusi. Penilitian ini bertujuan untuk menghitung dosimetri BNCT dalam berbagai posisikan kerdan geometri penyinaran dengan menggunakan program PHITS. Hasil perhitungan menunjukkan bahwa semakin dalam target kanker di otak maka semakin kecil total laju dosis serap dari target kanker. Semakin dalam target kanker di otak dibutuhkan waktu pengobatan yang semakin lama. Berdasarkan waktu pengobatan dan laju dosis serap dari target kanker, bidang penyinaran TOP merupakan pilihan yang tepat dalam mengobati target kanker dalam kasus ini. Untuk mencapai penyembuhan GBM secara histopatologis di lokasi utama, dosis serap dari otak dihitung berturut-turut sebesar 1,07 Gy dan 1,64 Gy untuk bidang penyinaran LLAT dan PA. Sedangkan, untuk posisi kanker 3 cm, 5 cm, 7,15 cm, 9 cm, dan 11 cm, berturut-turut dosis serap dari otak adalah 0,25 Gy, 0,48 Gy, 0,85 Gy, 1,33 Gy, and 2,01 Gy. Selain adanya efek stokastik, ditemukan juga efek deterministik yang mungkin dihasilkan seperti katarak.Kata kunci: Dosimetri BNCT, GBM, kasuskankerotak, geometripenyinaran, posisikanker, ORNLMIRD phantom.
OPTIMIZATION OF A NEUTRON BEAM SHAPING ASSEMBLY DESIGN FOR BNCT AND ITS DOSIMETRY SIMULATION BASED ON MCNPX I Made Ardana; Yohannes Sardjono
JURNAL TEKNOLOGI REAKTOR NUKLIR TRI DASA MEGA Vol 19, No 3 (2017): Oktober 2017
Publisher : Pusat Teknologi Dan Keselamatan Reaktor Nuklir (PTKRN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (625.594 KB) | DOI: 10.17146/tdm.2017.19.3.3582

Abstract

This article involves two main objectives of BNCT system. The first goal includes optimization of 30 MeV Cyclotron-based Boron Neutron Capture Therapy (BNCT) beam shaping assembly. The second goal is to calculate the neutron flux and dosimetry system of BNCT in the head and neck soft tissue sarcoma. A series of simulations has been carried out using a Monte Carlo N Particle X program to find out the final composition and configuration of a beam shaping assembly design to moderate the fast neutron flux, which is generated from the thick beryllium target. The final configuration of the beam shaping assembly design includes a 39 cm aluminum moderator, 8.2 cm of lithium fluoride as a fast neutron filter and a 0.5 cm boron carbide as a thermal neutron filter. Bismuth, lead fluoride, and lead were chosen as the aperture, reflector, and gamma shielding, respectively. Epithermal neutron fluxes in the suggested design were 2.83 x 109 n/s cm-2, while other IAEA parameters for BNCT beam shaping assembly design have been satisfied. In the next step, its dosimetry for head and neck soft tissue sarcoma is simulated by varying the concentration of boron compounds in ORNL neck phantom model to obtain the optimal dosimetry results. MCNPX calculation showed that the optimal depth for thermal neutrons was 4.8 cm in tissue phantom with the maximum dose rate found in the GTV on each boron concentration variation. The irradiation time needed for this therapy were less than an hour for each level of boron concentration.Keywords: Optimization, Beam Shaping Assembly, BNCT, Dosimetry, 30 MeV Cyclotron, MCNPX. OPTIMASI DESAIN KOLIMATOR NEUTRON UNTUK SISTEM BNCT DAN UJI DOSIMETRINYA MENGGUNAKAN PROGRAM MCNPX. Telah dilakukan penelitian tentang sistem BNCT yang meliputi dua tahapan simulasi dengan menggunakan program MCNPX yaitu uji simulasi untuk optimasi desain kolimator neutron untuk sistem BNCT berbasis Siklotron 30 MeV dan uji simulasi untuk menghitung fluks neutron dan dosimetri radiasi pada kanker sarkoma jaringan lunak pada leher dan kepala. Tujuan simulasi untuk mendapatkan desain kolimator yang paling optimal dalam memoderasi fluks neutron cepat yang dihasilkan dari sistem target berilium sehingga dapat dihasilkan fluks neutron yang sesuai untuk sistem BNCT. Uji optimasi dilakukan dengan cara memvariasikan bahan dan ketebalan masing-masing komponen dalam kolimator seperi reflektor, moderator, filter neutron cepat, filter neutron thermal, filter radiasi gamma dan lubang keluaran. Desain kolimator yang diperoleh dari hasil optimasi tersusun atas moderator berbahan Al dengan ketebalan 39 cm, filter neutron cepat berbahan LiF2 setebal 8,2 cm, dan filter neutron thermal berbahan B4C setebal 0,5 cm. Untuk reflektor, filter radiasi gamma dan lubang keluaran masing-masing menggunakan bahan PbF2, Pb dan Bi. Fluks neutron epithermal yang dihasilkan dari kolimator yang didesain adalah sebesar 2,83 x 109 n/s cm-2 dan telah memenuhi seluruh parameter fluks neutron yang sesuai untuk sistem BNCT. Selanjutnya uji simulasi dosimetri pada kanker sarkoma jaringan lunak pada leher dan kepala dilakukan dengan cara memvariasikan konsentrasi senyawa boron pada model phantom leher manusia (ORNL). Selanjutnya model phantom tersebut diiradiasi dengan fluks neutron yang berasal dari kolimator yang telah didesain sebelumnya. Hasilnya, fluks neutron thermal mencapai nilai tertinggi pada kedalaman 4,8 cm di dalam model phantom leher ORNL dengan laju dosis tertinggi terletak pada area jaringan kanker. Untuk masing-masing variasi konsentrasi senyawa boron pada model phantom leher ORNL supaya dapat mematikan jaringan kanker, membutukan waktu iradiasi neutron kurang dari satu jam.Kata kunci: Optimasi, Kolimator, BNCT, Dosimetri, Siklotron 30 MeV, MCNPX