Muhammad Subekti
Center for Nuclear Reactor Technology and Safety, BATAN, PUSPIPTEK Area Building no.80 Serpong, Tangerang Selatan, 15310 Indonesia

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

TRANSIENT ANALYSIS OF SIMULTANEOUS LOFA AND RIA IN RSG-GAS REACTOR AFTER 32 YEARS OPERATION Muhammad Darwis Isnaini; Iman Kuntoro; Muhammad Subekti
JURNAL TEKNOLOGI REAKTOR NUKLIR TRI DASA MEGA Vol 22, No 3 (2020): OCTOBER 2020
Publisher : Pusat Teknologi Dan Keselamatan Reaktor Nuklir (PTKRN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17146/tdm.2020.22.3.5944

Abstract

During the operation of the research reactor RSG-GAS, there are many design parameters should be verified based on postulated accidents. Several design basis accidents (DBA) such as loss of flow accident (LOFA) and reactivity-initiated accident (RIA) also have been conducted separately. This paper discusses about possibility of simultaneous accidents of LOFA and RIA. The accident analyses carry out calculation for transient condition during RIA, LOFA, and postulated accident of simultaneous LOFA-RIA. This study aims to conduct a safety analysis on simultaneous LOFA and RIA, and investigate the impact on safety margins. The calculations are conducted by using the PARET code. The maximum temperature of the center fuel meat at nominal power of 30 MW and steady state conditions is 126.10°C and MDNBR of 2.94. At transients condition, the maximum center fuel meat temperature for LOFA, RIA and simultaneous LOFA-RIA are consecutively 132.99°C, 135.67°C and 138.21°C, and the time of reactor trip are 3.2593s, 3.6494s and 2.7118s, respectively. While the MDNBR for LOFA, RIA and simultaneous LOFA-RIA are respectively at transient condition are 2.88, 2.58 and 2.63, respectively. It is shown that, simultaneous LOFA-RIA has the fastest trip time. In this case, the low flow trip occurs first in advance to over power trip.  From these results, it can be concluded that the RSG-GAS has adequate safety margin against transient of simultaneous LOFA-RIA.Keywords: RSG-GAS, Simultaneous, LOFA, RIA, PARET