Claim Missing Document
Check
Articles

Found 3 Documents
Search

ANALYSIS OF COGENERATION ENERGY CONVERSION SYSTEM DESIGN IN IPWR REACTOR Ign. Djoko Irianto; Sriyono Sriyono; Sukmanto Dibyo; Djati Hoesen Salimy; Tukiran Surbakti; Rahayu Kusumastuti
JURNAL TEKNOLOGI REAKTOR NUKLIR TRI DASA MEGA Vol 24, No 1 (2022): February (2022)
Publisher : Pusat Teknologi Dan Keselamatan Reaktor Nuklir (PTKRN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17146/tdm.2022.24.1.6414

Abstract

The acceleration of national development, especially in the industrial sector, requires an adequate national energy supply. There are various types of energy sources which include conventional energy sources as well as new and renewable energy sources including nuclear energy. The problem is how to utilize these energy sources into energy that is ready to be utilized. BATAN as a research and development institution in the nuclear field has taken the initiative to contribute to the development of technology for providing electricity and other thermal energy, particularly reactor technology as a power plant and a provider of thermal energy. This research aims to analyze the design of the IPWR type SMR reactor cogeneration energy conversion system. The IPWR reactor cogeneration energy conversion system which also functions as a reactor coolant is arranged in an indirect cycle configuration or Rankine cycle. Between the primary cooling system and the secondary cooling system is mediated by a heat exchanger which also functions as a steam generator. The analysis was carried out using ChemCAD computer software to study the temperature characteristics and performance parameters of the IPWR reactor cogeneration energy conversion system. The simulation results show that the temperature of saturated steam coming out of the steam generating unit is around 505.17 K. Saturated steam is obtained in the reactor power range between 40 MWth to 100 MWth. The results of the calculation of the energy utilization factor (EUF) show that the IPWR cogeneration configuration can increase the value of the energy utilization factor up to 91.20%.
PENGELOLAAN SUMBER DAYA ENERGI DI KALIMANTAN UNTUK MENDUKUNG KEMANDIRIAN ENERGI DAN PERTUMBUHAN INDUSTRI Rizky Firmansyah Setya Budi; Wiku Lulus Widodo; Djati Hoesen Salimy
Jurnal Pengembangan Energi Nuklir Vol 16, No 1 (2014): Juni 2014
Publisher : Pusat Kajian Sistem Energi Nuklir, Badan Tenaga Nuklir Nasional

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17146/jpen.2014.16.1.2508

Abstract

ABSTRAK PENGELOLAAN SUMBER DAYA ENERGI DI KALIMANTAN UNTUK MENDUKUNG KEMANDIRIAN ENERGI DAN PERTUMBUHAN INDUSTRI. Berbagai macam sumber daya energi di Kalimantan, seperti batubara, minyak bumi, Coal Bed Methane (CBM), gas alam, dan nuklir tersedia cukup besar, sementara konsumsi energi listriknya  masih rendah. Kondisi tersebut disebabkan karena tidak atau kurang adanya perencanaan energi yang baik. Tujuan penelitian untuk mengetahui jumlah dan kemampuan sumber daya energi untuk memenuhi kebutuhan dalam rangka mendukung pertumbuhan industri di Kalimantan. Metodologi penelitian adalah pengumpulan data dan pengolahan data menggunakan Program MESSAGE. Hasil penelitian menunjukkan bahwa sumber daya energi mencukupi untuk mendukung kemandirian energi dan pertumbuhan industri  di Kalimantan. Jumlah sumber daya batubara 34.814 juta ton dan konsumsi 835 juta ton, gas bumi 31.814 BSCF dan konsumsi 3.281 BSCF, minyak bumi 920 MMSTB dan konsumsi 4406 MMSTB, CBM 210 TCF dan konsumsi 2,1 TCF, nuklir (U3O8) 12.409 ton dan konsumsi belum ada, tenaga air dan biomassa masing-masing sebesar 256 dan 138 MWtahun, konsumsi maksimal setiap tahunnya adalah 183 dan 126 MWtahun. Data menunjukkan konsumsi minyak akan melebihi sumber daya minyak yang ada di Kalimantan sehingga diperlukan impor atau pengalihan ke sumber daya bahan bakar lain yang mempunyai sisa berlebih, seperti gas, CBM dan batubara. Potensi untuk mewujudkan lingkungan yang bersih dapat dilakukan dengan memanfaatkan energi nuklir. Kata kunci: Sumber daya, energi, industri ABSTRACT KALIMANTAN ENERGY RESOURCE MANAGEMENT TO SUPPORT ENERGY INDEPENDENCE AND INDUSTRY GROWTH. There are a large number of   energy resource in Kalimantan such as coal, oil, CBM, gas and nuclear. While the electricity consumption still low. That condition caused by the bad energy planning. The aim of the study are to know the number and the ability of energy resource  to supply the energy demand  that support the growth of Kalimantan industry. The metodology are collecting and processing data through calculation using MESSAGE Program. The result is energy resource in Kalimantan can support Kalimantan energy independence and industry growth in Kalimantan. The coal resource is 34,814 million ton consumption 835 million ton, gas resource is 31,814 BSCF consumption 3,281 BSCF, Oil resource is 920 MMSTB consumption 4406 MMSTB, CBM resource is 210 TCF consumption 2.1 TCF, U3O8 resource is 12,409 ton consumption zero. Whereas for hydro and biomass, the resource are 256 and 138 MWyr, the maximum consumption 185 and 126 MWyr every year. Oil consumption will exceed the resource so need import from other island or replaced by others energy that have large resource such as gas, CBM, or coal. Potency to make cleaner environtment can be done by used nuclear energy. Keyword: Resource, energy, industry 
ANALISIS PASOKAN PANAS PADA PRODUKSI HIDROGEN PROSES STEAM REFORMING KONVENSIONAL DAN NUKLIR Siti Alimah; Djati Hoesen Salimy
Jurnal Pengembangan Energi Nuklir Vol 17, No 1 (2015): Juni 2015
Publisher : Pusat Kajian Sistem Energi Nuklir, Badan Tenaga Nuklir Nasional

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17146/jpen.2015.17.1.2614

Abstract

ABSTRAK ANALISIS PASOKAN PANAS PADA PRODUKSI HIDROGEN PROSES STEAM REFORMING KONVENSIONAL DAN NUKLIR. Telah dilakukan analisis pasokan energi panas pada produksi hidrogen dengan proses steam reforming gas alam. Tujuan studi adalah untuk memahami sistem pasokan energi panas konvensional dan dengan nuklir. Metodologi yang digunakan adalah kajian literatur dan analisis berdasar perbandingan. Hasil studi menunjukkan bahwa proses dengan sumber panas bahan bakar fosil (gas alam) mampu memberikan kondisi operasi optimum temperatur 850-900oC dan tekanan 2-3 MPa, serta dengan perpindahan panas didominasi oleh perpindahan panas radiasi, sehingga fluks panas yang dapat dicapai pada tabung katalisator relatif tinggi (50-80 kW/m2) dan menghasilkan efisiensi thermal yang tinggi yaitu sekitar 85%. Sedang pada sistem dengan energi nuklir, karena tuntutan keselamatan, proses beroperasi pada kondisi yang kurang optimum temperatur 800-850oC dan tekanan 4,5 MPa, serta dengan perpindahan panas didominasi oleh perpindahan panas konveksi, sehingga fluks panas yang dapat dicapai pada tabung katalisator jauh lebih rendah (10-20 kW/m2) dan menghasilkan efisiensi thermal yang rendah sekitar 50%. Modifikasi reformer dan utilisasi panas mampu meningkatkan fluks panas sampai 40 kW/m2 sehingga efisiensi thermal dapat mencapai 78%. Meskipun demikian, aplikasi energi nuklir untuk produksi hidrogen dengan proses steam reforming mampu menghemat pembakaran bahan bakar fosil yang berimplikasi pada potensi penurunan laju emisi CO2 ke lingkungan. Kata kunci: produksi hidrogen, steam reforming, reformer, HTGR ABSTRACT HEAT SUPPLY ANALYSIS OF STEAM REFORMING HYDROGEN PRODUCTION PROCESS IN CONVENTIONAL AND NUCLEAR. The analysis of heat energy supply in the production of hydrogen by natural gas steam reforming process has been done. The aim of the study is to compare the energy supply system of conventional and nuclear heat. Methodology used in this study is an assessment of literature and analysis based on the comparisons. The study shows that the heat sources of fossil fuels (natural gas) is able to provide optimum operating conditions of temperature and pressure of 850-900oC and 2-3 MPa, as well as the heat transfer is dominated by radiation heat transfer, so that the heat flux that can be achieved on the catalyst tube relatively high (50-80 kW/m2) and provide high thermal efficiency of about 85%. While in the system with nuclear energy, due to the demands of safety, process operating at less than optimum conditions of temperature and pressure of 800-850oC and 4.5 MPa, as well as the heat transfer is dominated by convection heat transfer, so that the heat flux that can be achieved catalyst tube is relatively low (10- 20 kW/m2) and it provides a low thermal efficiency of about 50%. Modifications of reformer and heat utilization can increase the heat flux up to 40 kW/m2 so that the thermal efficiency can reach 78%. Nevertheless, the application of nuclear energy to hydrogen production with steam reforming process is able to reduce the burning of fossil fuels which has implications for the potential decrease in the rate of CO2 emissions into the environment. Keywords: hydrogen production, steam reforming, reformer, HTGR