Isman Mulyadi Triatmoko
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

RADIATION DOSE OPTIMIZATION OF BREAST CANCER WITH PROTON THERAPY METHOD USING PARTICLE AND HEAVY ION TRANSPORT CODE SYSTEM Milah Fadhilah Kusuma Fasihu; Andang Widi Harto; Isman Mulyadi Triatmoko; Gede Sutrisna Wijaya; Yohannes Sardjono
JURNAL TEKNOLOGI REAKTOR NUKLIR TRI DASA MEGA Vol 23, No 2 (2021): June 2021
Publisher : Pusat Teknologi Dan Keselamatan Reaktor Nuklir (PTKRN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17146/tdm.2021.23.2.6290

Abstract

Radiotherapy is one of the cancer treatments conducted by giving a high dose to the tumor target and minimizing the dose exposed in the healthy organs. One of the methods is proton therapy. Proton therapy is usually used in several breast cancer cases by minimizing the damage in the surrounding tissues due to having good precision. In this study, proton therapy in breast cancer will be simulated. This study aims to identify the optimal dose in breast cancer therapy using proton therapy and to identify the dose exposed in the healthy organs surrounding cancer. This study is PHITS program simulation-based to model the geometry and the components of breast cancer and the surrounding organs. The source of radiation used is proton which is the output of proton therapy with proton/sec firing intensity. The variation in beam modelling towards the dose profile of the tumor used is uniform and pencil beam. The proton energy used is 70 MeV up to 120 MeV. The result of this study shows that the dose from using pencil beam scanning technic of proton therapy for breast cancer is 50.3997 Gy (W) with the total amount of fraction is 25 and the result of dose below the threshold dose in the healthy organs is the skin gets 4.4.0553 Gy per fraction, the left breast gets 0,0011 Gy per fraction, the right breast gets 2.6469 Gy per fractions, the right lung gets 0.0125 Gy per fraction, the left lung gets 0.029 Gy per fraction, the rib gets 0.0179 Gy per fraction, and the heart gets 0.0077 Gy per fraction.
DOSE DISTRIBUTION ANALYSIS OF PROTON THERAPY FOR MEDULLOBLASTOMA CANCER WITH PHITS 3.24 Moh. Miftakhul Dwi Fianto; Yohannes Sardjono; Andang Widi Harto; Isman Mulyadi Triatmoko; Gede Sutresna Wijaya; Yaser Kasesaz
JURNAL TEKNOLOGI REAKTOR NUKLIR TRI DASA MEGA Vol 24, No 1 (2022): February (2022)
Publisher : Pusat Teknologi Dan Keselamatan Reaktor Nuklir (PTKRN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17146/tdm.2022.24.1.6581

Abstract

One of the developments in particle therapy is proton radiation therapy. Meanwhile, a limited number of available proton therapy facilities makes research related to proton therapy difficult. Therefore, there is a need for alternative proton therapy simulations using programs other than those in proton therapy facilities. This research was aimed to simulate medulloblastoma brain cancer which children often experience.The program used in this research was PHITS version 3.24. The human body was modeled with the revised ORNL-MIRD phantom for a 10-year-old child. The therapy scheme was a whole posterior fossa boost of 19.8 Gy. The proton passive scattering was simulated by passing a uniform proton beam through the aperture and compensator with energy variations. The proton pencil beam scanning was simulated with small cylindrical beams with a radius of 0.5 cm, which were adjusted to the planning target volume with layers variations.The total duration to give the prescription dose was 550 seconds with passive scattering and 605 seconds with pencil beam scanning. In passive scattering, the OAR(s) with the most significant percentage of absorbed dose were the skin, cranium, and muscle, i.e., 8.22 ± 0.15 %, 5.51 ± 0.05 % and 1.39 ± 0,04 % respectively to their maximum tolerated dose, while in the pencil beam scanning, the OAR(s) with the most significant percentage of absorbed dose were the skin, cranium, and muscle, i.e., 5.42 ± 0.08 %, 4.43 ± 0.05 % and 0.51 ± 0.05 % respectively to their maximum tolerated dose. Dose distribution in passive scattering was relatively better than in pencil beam scanning in terms of dose homogeneity using dose sampling analysis at some points within the planning target volume.