Claim Missing Document
Check
Articles

Found 5 Documents
Search

PRELIMINARY DESIGN OF RDE FEEDWATER PUMP IMPELLER Sri Sudadiyo
JURNAL TEKNOLOGI REAKTOR NUKLIR TRI DASA MEGA Vol 20, No 1 (2018): Februari 2018
Publisher : Pusat Teknologi Dan Keselamatan Reaktor Nuklir (PTKRN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (832.099 KB) | DOI: 10.17146/tdm.2018.20.1.3647

Abstract

Nowadays, pumps are being widely used in the thermal power generation including nuclear power plants. Reaktor Daya Eksperimental (RDE) is a proposed nuclear reactor concept for the type of nuclear power plant in Indonesia. This RDE has thermal power 10 MWth, and uses a feedwater pump within its steam cycle. The performance of feedwater pump depends on size and geometry of impeller model, such as the number of blades and the blade angle. The purpose of this study is to perform a preliminary design on an impeller of feedwater pump for RDE and to simulate its performance characteristics. The Fortran code is used as an aid in data calculation in order to rapidly compute the blade shape of feedwater pump impeller, particularly for a RDE case. The calculations analyses is solved by utilizing empirical correlations, which are related to size and geometry of a pump impeller model, while performance characteristics analysis is done based on velocity triangle diagram. The effect of leakage, pass through the impeller due to the required clearances between the feedwater pump impeller and the volute channel, is also considered. Comparison between the feedwater pump of HTR-10 and of RDE shows similarity in the trend line of curve shape. These characteristics curves will be very useful for the values prediction of performance of a RDE feedwater pump. Preliminary design of feedwater pump provides the size and geometry of impeller blade model with 5-blades, inlet angle 14.5 degrees, exit angle 25 degrees, inside diameter 81.3 mm, exit diameter 275.2 mm, thickness 4.7 mm, and height 14.1 mm. In addition, the optimal values of performance characteristics were obtained when flow capacity was 4.8 kg/s, fluid head was 29.1 m, shaft mechanical power was 2.64 kW, and efficiency was 52 % at rotational speed 1750 rpm.Keywords: Blade, impeller, pump, RDEDESAIN AWAL IMPELER POMPA AIR UMPAN RDE. Saat ini, pompa digunakan secara luas dalam pembangkit tenaga termal termasuk pembangkit listrik tenaga nuklir. Reaktor Daya Eksperimental (RDE) merupakan konsep reaktor nuklir yang diusulkan untuk tipe PLTN di Indonesia. RDE ini memiliki daya termal 10 MWth, dan menggunakan pompa air umpan dalam siklus uapnya. Kinerja pompa air umpan bergantung pada ukuran dan geometri model impeller, seperti jumlah sudu dan sudut sudu. Tujuan dari penelitian ini adalah untuk membuat rancangan awal impeller pompa air umpan untuk RDE dan untuk mensimulasikan karakteristik kinerjanya. Kode Fortran digunakan sebagai bantuan dalam penghitungan data untuk untuk mengkalkulasi secara cepat bentuk sudu impeller pompa air umpan, terutama pada kasus RDE. Analisis perhitungan dipecahkan menggunakan korelasi empiris yang terkait dengan ukuran dan geometri model impeller pompa, sedangkan analisis karakteristik kinerja dilakukan berdasarkan diagram segitiga kecepatan. Pengaruh bocoran, melalui impeler akibat celah yang diperlukan antara impeller pompa air umpan dan saluran volute, juga dipertimbangkan. Perbandingan antara pompa air umpan HTR-10 dan RDE menunjukkan kemiripan dalam garis tren bentuk kurva. Kurva karakteristik ini akan sangat berguna untuk perkiraan nilai kinerja pompa air umpan RDE. Desain awal pompa air umpan memberikan ukuran dan geometri model sudu impeller dengan 5-sudu, sudut masuk 14,5 derajat, sudut keluar 25 derajat, diameter dalam 81,3 mm, diameter luar 275,2 mm, ketebalan 4,7 mm, dan tinggi 14,1 mm. Selain itu, nilai optimal karakteristik kinerja diperoleh ketika kapasitas aliran 4,8 kg/s, head fluida 29,1 m, tenaga mekanik poros 2,64 kW, dan efisiensi 52 % pada kecepatan putaran 1750 rpm.Kata kunci: Sudu, impeler, pompa, RDE
DESAIN AWAL TURBIN UAP TIPE AKSIAL UNTUK KONSEP RGTT30 BERPENDINGIN HELIUM Sri Sudadiyo; Jupiter Sitorus Pane
JURNAL TEKNOLOGI REAKTOR NUKLIR TRI DASA MEGA Vol 18, No 2 (2016): Juni 2016
Publisher : Pusat Teknologi Dan Keselamatan Reaktor Nuklir (PTKRN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (731.371 KB) | DOI: 10.17146/tdm.2016.18.2.2319

Abstract

ABSTRAK DESAIN AWAL TURBIN UAP TIPE AKSIAL UNTUK KONSEP RGTT30 BERPENDINGIN HELIUM. Konsep reaktor daya nuklir yang dikembangkan merupakan jenis reaktor berpendingin gas dengan temperatur tinggi (RGTT). Gas yang digunakan untuk mendinginkan teras RGTT adalah helium. Konsep RGTT ini dapat menghasilkan daya termal 30 MWth sehingga dinamakan RGTT30. Temperatur helium mampu mencapai 700 °C ketika keluar dari teras RGTT30 dan digunakan untuk memanaskan air di dalam steam generator hingga mencapai temperatur 435 °C. Steam generator dihubungkan dengan turbin uap yang dikopel dengan generator listrik untuk membangkitkan daya 7,27 MWe. Uap yang keluar dari turbin dilewatkan kondensor untuk mencairkan uap menjadi air. Rangkaian komponen dari steam generator, turbin, dan kondensor dinamakan sistem turbin uap. Turbin terdiri dari sudu-sudu yang dimaksudkan untuk mengubah tenaga uap kedalam tenaga mekanis berupa putaran. Efisiensi turbin merupakan parameter yang harus diperhatikan dalam sistem turbin uap ini. Tujuan dari makalah ini adalah untuk mengusulkan sudu tipe aksial dan untuk menganalisa perbaikan efisiensi turbin. Metode yang digunakan yaitu aplikasi prinsip termodinamika yang berhubungan dengan konservasi energi dan massa. Perangkat lunak Cycle-Tempo dipakai untuk mendapatkan parameter termodinamika dan untuk mensimulasikan sistem turbin uap berbasis RGTT30. Pertama, dibuat skenario dalam simulasi sistem turbin uap untuk mengetahui efisiensi dan laju aliran massa uap yang diperoleh nilai optimal 87,52 % dan 8,759 kg/s pada putaran 3000 rpm. Kemudian, turbin uap diberi sudu tipe aksial dengan diameter tip 1580 mm dan panjang 150 mm. Hasil yang diperoleh adalah nilai efisiensi turbin uap naik menjadi 88,3 % pada putaran konstan (3000 rpm). Penambahan nilai efisiensi turbin sebesar 0,78 % menunjukkan peningkatan kinerja RGTT30 secara keseluruhan. Kata kunci: Tipe aksial, turbin uap, RGTT30   ABSTRACT PRELIMINARY DESIGN ON STEAM TURBINE OF AXIAL TYPE FOR HELIUM-COOLED RGTT30 CONCEPT. The concept of a nuclear power reactor, which evolves, is high temperature gas-cooled reactor type (HTGR). Gas that is used to cool the HTGR core, is helium. The HTGR concept used in this study can yield thermal power of 30 MWth so that named RGTT30. Helium temperature can reach 700 °C when come out from the RGTT30 core and it is used for heating the water within steam generator to achieve the temperature of 435 °C. The steam generator is connected to a steam turbine, which is coupled with an electricity generator, for generating electric power of 7.27 MWe. The steam that comes out from the turbine is flowed through condenser for changing the steam into water. The component train of steam generator, turbine, and condenser was given the name of steam turbine system. The turbine consists of blades that are intended to transform the steam power into mechanical power in the form of rotational speed. Turbine efficiency is a parameter that must be considered in this steam turbine system. The aims of this paper are to propose blade of axial type and to analyze the efficiency improvement of the turbine. The method used is the application of the thermodynamic principles associated with conservations of energy and mass. Cycle-Tempo software is used to obtain thermodynamic parameters and to simulate the steam turbine system based on RGTT30. Firstly, a scenario is created to model and simulate the steam turbine system for determining the efficiency and the mass flow rate of steam. The optimal values for the efficiency and the mass flow rates at the speed of 3000 rpm are 87.52 % and 8.759 kg/s, respectively. Then, the steam turbine was given the blade of axial type with a tip diameter of 1580 mm and a length of 150 mm. The results obtained are turbine efficiency increasing to 88.3% on constant speed (3000 rpm). Enhancement in the turbine efficiency value of 0.78% showed raising the overall performance of RGTT30. Keywords: Axial type, steam turbine, RGTT30 
THERMODYNAMICS ANALYSES ON REGENERATIVE STEAM CYCLE WITH TWO TANKS FOR HTGR-10 CONCEPT Sri Sudadiyo; Geni Rina Sunaryo
GANENDRA Majalah IPTEK Nuklir Volume 20 Nomor 2 Juli 2017
Publisher : Website

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1116.723 KB) | DOI: 10.17146/gnd.2017.20.2.3302

Abstract

In this work, steam cycle from a nuclear power plant is explored in order to increase efficiency and electric power output. A thermal source in the form of a HTGR-10 concept is considered. The power conversion unit of HTGR-10 consists of steam generator, turbine, condenser, pump, and connecting pipes. Helium is used as the core coolant and the working fluid for power conversion unit is water/steam. The proposed thermodynamic process modification has been evaluated for regenerative steam power cycle of this reactor. The scope of study covered regenerative steam cycle with two tanks including feed water tank and intermediate feed water tank. The evaluation analyzes the effect of pressure, efficiencies of turbine and pumps, and tanks against thermal efficiency. The Cycle-Tempo software is used to simulate and optimized this effect on steam cycle based on HTGR-10. The results indicate improvements of as much as 2.65 % in thermal efficiency and 0.271 MWe in electric power.
CYLINDRICAL SHELL ANALYSIS OF REACTOR PRESSURE VESSEL FOR RDE Sri Sudadiyo
GANENDRA Majalah IPTEK Nuklir Volume 24 Nomor 1 Januari 2021
Publisher : Website

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17146/gnd.2021.24.1.5191

Abstract

CYLINDRICAL SHELL ANALYSIS OF REACTOR PRESSURE VESSEL FOR RDE. The present study deals with the design process analysis of cylindrical shell for Reactor Pressure Vessel (RPV) of Reaktor Daya Eksperimental (RDE). The RDE is prepared by BATAN for nuclear technology provider in Indonesia. RPV is a container for confining helium gas at elevated pressure and temperature (circa 700 °C). In RPV operation, mechanical stresses act as in consequence of internal pressure (3 MPa), external pressure, and different loads due to dead weight and helium content load. Therefore, if the RPV could not retain its material strength or exceed the maximum allowable shear stress it will cause failure. The applications and validity of Fortran code (RPV_RDE.exe) for the design analysis are represented by two simulation cases, which indicate good calculation results of design outputs compared to analytic solutions. Design outputs have met the safe requirements for the minimum wall thickness of cylindrical shell in upper portion of 60 mm and in lower portion of 100 mm, respectively.
Buckling Analysis of Circular Shells for RDE Reactor Pressure Vessel by Finite Element Study and Analytical Model Sri Sudadiyo; Muhammad Subekti
Jurnal Pengembangan Energi Nuklir Vol 21, No 2 (2019): Desember 2019
Publisher : Pusat Kajian Sistem Energi Nuklir, Badan Tenaga Nuklir Nasional

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17146/jpen.2019.21.2.5623

Abstract

One of the basic design considerations for circular shells of Reactor Pressure Vessel (RPV) components of Reaktor Daya Eksperimental (RDE) is buckling mode shape of geometric structure imperfections. Geometric structure is prone to a large number of imperfections due to the manufacturing difficulties. Moreover, determination of critical loads of circular shell structure can be properly approximated only through randomness in the geometry. As at the basic design phase this is possible and expensive to measure the geometric structure imperfections in situ or in laboratory, a simulation of computer code should be provided. In this paper, a contribution is made to numerical simulation by finite element study and analytical model by Monte Carlo technique approach of such circular shells for RPV components. For this reason, computer code SolidWorks is used in the implementation finite element analysis and Fortran code is developed for analytical model analysis. The main objective of this investigation is to provide a comprehensive analysis of unstable structure due to the buckled geometric imperfection in the design calculations involved. A method of solution attempts to use the linearized equilibrium equations to interpret geometric imperfections as structure of circular shells associated with the RPV components of RDE. A number of calculation results carried out on a computer code are presented to illustrate the design of RPV components that are safe from the buckled shape failure. It is found that both of the computer code results are very similar with greatest difference value of vibrational amplitude of 0.00699 % and smallest value for buckling load factor of 12.51 on upper circular shell under 750 C conditions.