Aslina Br.Ginting
Pusat Teknologi Bahan Bakar Nuklir (PTBBN), BATAN Kawasan Puspiptek-Tangerang Selatan 15314, Banten

Published : 5 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 4 Documents
Search
Journal : Urania Jurnal Ilmiah Daur Bahan Bakar Nuklir

KARAKTERISASI SIFAT TERMAL PADUAN AlFe(2,5%)Ni(1,5%) DAN AlFe(2,5%)Ni(1,5%)Mg(1%) UNTUK KELONGSONG BAHAN BAKAR REAKTOR RISET Aslina Br.Ginting; Boybul .; Arif Nugroho
Urania : Jurnal Ilmiah Daur Bahan Bakar Nuklir Vol 20, No 1 (2014): Februari 2014
Publisher : website

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (466.757 KB) | DOI: 10.17146/urania.2014.20.1.2415

Abstract

ABSTRAK KARAKTERISASI SIFAT TERMAL  PADUAN AlFe(2,5%)Ni(1,5%)  DAN AlFe(2,5%)Ni(1,5%)Mg(1%) UNTUK  KELONGSONG BAHAN BAKAR REAKTOR RISET. Karakterisasi sifat termal telah dilakukan terhadap paduan AlFe(2,5%)Ni(1,5%) dan AlFe(2,5%)Ni(1,5%)Mg(1%). Analisis sifat termal meliputi entalpi, temperatur peleburan dan temperatur perubahan fasa, kapasitas panas serta besaran konduktivitas panas. Tujuan dilakukannya penelitian ini adalah untuk mengetahui karakter sifat termal paduan AlFeNi sebagai alternatif kelongsong bahan bakar nuklir densitas tinggi. Analisis besaran entalpi, temperatur peleburan, temperatur perubahan fasa dan kestabilan panas dilakukan dengan menggunakan Differential Thermal Analysis (DTA) dan untuk menganalisis sifat kapasitas panas digunakan Differential Scanning Calorimetry (DSC) serta alat Termalkonduktometer digunakan untuk mengetahui sifat konduktivitas panas kedua  paduan tersebut. Hasil analisis  dengan DTA menunjukkan bahwa ke dua paduan tersebut mempunyai kestabilan panas hingga temperatur 650oC.  Paduan AlFe(2,5%)Ni((1,5%) mengalami reaksi termokimia 2 (dua) tahap,  pada tahap pertama  terjadi perubahan aliran panas membentuk  puncak endotermik  pada temperatur 656,26oC dengan membutuhkan panas sekitar ΔH=56,35 cal/g.  Pada temperatur 711,64oC terjadi reaksi tahap ke dua  yang menunjukkan  terjadinya reaksi secara langsung antara lelehan unsur Al dengan unsur Fe dan Ni pada titik eutektiknya. Reaksi ini membentuk senyawa Al-FeAl3 dan Al-NiAl3 dengan melepaskan panas sebesar ΔH=-13,95cal/g. Paduan AlFe(2,5%)Ni(1,5%)Mg(1%) mengalami reaksi termokimia sebanyak 3 tahap. Reaksi tahap pertama terbentuk puncak endotermik pada temperatur 389,15oC dengan entalpi sebesar ΔH= 1,13cal/g. Pada temperatur 654,52oC terjadi juga reaksi endotermik yang menunjukkan terjadinya perubahan fasa α menjadi (α +liquid) logam Al dengan Mg yang membutuhkan panas sebesar ΔH=2,75cal/g. Reaksi tahap ketiga terjadi pada temperatur 562,41oC yang ditandai dengan terbentuknya puncak endotermik yang menunjukkan  proses peleburan logam Al dan Mg, sekaligus terjadi pembentukan senyawa AlMg dengan  membutuhkan panas reaksi sebesar ΔH= 56,22cal/g. Hasil analisis kapasitas panas dan konduktivitas panas menunjukkan bahwa penambahan logam Mg 1% meningkatkan kapasitas panas dan konduktivitas panas kedua paduan.  Paduan AlFe(2,5%)(Ni1,5%) mempunyai kapasitas  panas sebesar 0,60 J/goC pada temperatur 35oC hingga 0,90 J/goC pada temperatur 450oC, sedangkan paduan AlFe(2,5%)Ni(1,5%)Mg1% mempunyai kapasitas panas sebesar 0,64 J/goC pada temperatur 35oC hingga 0,142 J/goC pada temperatur 450oC. Paduan AlFe(2,5%)(Ni1,5%) mempunyai konduktivitas panas sebesar 235 W/moK pada temperatur 25oC hingga 185,5 W/moK pada temperatur  200oC dan paduan AlFe(2,5%)Ni(1,5%)Mg1%  mempunyai konduktivitas panas sebesar 240,4 W/moK pada temperatur 25oC hingga 192,3 W/moK pada temperatur 200oC. Namun,  kedua paduan tersebut mempunyai kapasitas panas maupun konduktivitas panas yang menurun dengan naiknya temperatur pemanasan. Kata kunci: Paduan AlFeNi, entalpi, kesetabilan panas, kapasitas panas, dan konduktivitas panas ABSTRACT CHARACTERIZATION  OF THERMAL CHARACTERISTIC OF AlFe(2,5%)Ni(1,5%) AND AlFe(2,5%)Ni(1,5%)Mg(1%) ALLOYS  FOR RESEARCH REACTOR CLADDING. This research deals with thermal characterization of AlFe(2,5%)Ni(1,5%) and AlFe(2,5%)Ni(1,5%)Mg(1%) alloys which previously produced. The thermal characterization includes enthalpy analysis, phase change temperature, heat capacity, and heat conductivity. The enthalpy analysis and phase change temperature and heat stability measurement was done using Differential Thermal Analysis (DTA), while the heat capacity measurement was performed by Differential Scanning Calorimetry (DSC) and the heat conductivity measurement was done using Thermal conductometer.  The analysis using DTA shows that both alloys has a thermal stability at 650oC. The AlFe(2,5%)Ni(1,5%) alloy underwent 2 steps of thermochemical reaction. The first thermochemical  reaction showed the occuramce of heat flow change forming endothermic peak at 656,26oC and at ΔH=56,35 cal/g. The endothermic reaction indicates the melting of Al contained in  the AlFe(2,5%)Ni(1,5%) alloy. The second thermochemical reaction occured at 711,64oC, which indicates that the melted Al directly reacted with Fe and Ni at their eutectic point to form Al-FeAl3 and Al-NiAl3. The occurance of reaction of Al with Fe and Ni was indicated by exothermic thermochemical reaction releasing an amount of heat with appoximate ΔH= -13,95 cal/g. The AlFe(2,5%)Ni(1,5%)Mg(1%) alloy, on the other hand, underwent 3 steps thermochemical reaction. The first reaction resulted in endothermic peak at 389,15oC with enthalpy ΔH= 1,13 cal/g. This endothermic reaction indicates that there is a reaction between Mg and N2 gas contained in the argon used as media for the measurement to form Mg3N2. Endothermic reaction also occured at 654,52oC, which indicates the occurance of phase change point from α phase to α+liquid of Al and Mg requiring ΔH= 2,75 cal/g.  The third reaction occured at 562,41oC, which was indicated by endothermic peak. This reaction suggests the burning of Al and Mg to form AlMg with ΔH= 56,22 cal/g. The heat capacity  and heat conductivity analysis shows that the addition of  1% Mg may have increased the heat capacity  and heat conductivity of  both alloys. The  heat capacity of AlFe(2,5%)(Ni1,5%) alloy  ranged  from  0,60 J/goC at 35oC  to 0,90 J/goC at 450oC, while the heat capacity of  AlFe(2,5%)Ni(1,5%)Mg1% alloy ranged from 0,64 J/goC at 35oC  to 0,142 J/goC at 450oC.  The heat conductivity analysis showed that the heat conductivity of AlFe(2,5%)(Ni1,5%) ranged from 235 W/moK at 25oC to 185,5 W/moK at 200oC, while the heat conductivity of AlFe(2,5%)Ni(1,5%)Mg1%  ranged from 240,4 W/moK at 25oC to 192,3 W/moK at 200oC. It is also studied that heat capacity and heat conductivity of  both alloys decrease with increasing heating temperature. Keyword : AlFeNi alloy, enthalpy, heat stability, heat capacity, and conductivity.
PEMBUATAN ISOTOP 137Cs SEBAGAI SUMBER RADIASI GAMMA UNTUK DIGUNAKAN DALAM INDUSTRI Aslina Br.Ginting; Dian Anggraini; Arif Nugroho; Rosika Kriswarini; Gatot Wurdiyanto; Hermawan .
Urania : Jurnal Ilmiah Daur Bahan Bakar Nuklir Vol 20, No 3 (2014): Oktober 2014
Publisher : website

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17146/urania.2014.20.3.2392

Abstract

ABSTRAK PEMBUATAN ISOTOPCs SEBAGAI SUMBER RADIASI GAMMA UNTUK DIGUNAKAN DALAM INDUSTRI. Dalam melakukan uji pasca iradiasi pelat elemen bakar (PEB) U3Si2-Al banyak larutan hasil pengujian bahan bakar nuklir yang disimpan di dalam hotcell dengan keaktifan yang sangat tinggi. Larutan tersebut mengandung isotop 137Cs, uranium serta transuranium yang mempunyai waktu paroh panjang dan berbahaya bagi lingkungan. Namun limbah hasil pengujian tersebut memiliki nilai ekonomis tinggi karena dapat dimanfaatkan sebagai   bahan baku untuk pembuatan sumber radiasi sinar gamma isotop  137Cs. Hal ini dapat membantu bidang industri dalam memenuhi kebutuhan sumber radioaktif dalam negeri karena selama ini  kebutuhan isotope 137Cs di Indonesia masih tergantung dari industri luar negeri. Selain itu, pengadaan dan transportasi isotope 137Cs dari luar negeri serta dalam penggunaannya memerlukan persyaratan yang cukup ketat karena harus mendapat izin persetujuan dari Badan Pengawas Tenaga Nuklir Nasional (BAPETEN), sehingga menyebabkan harga isotope 137Cs menjadi mahal sampai di Indonesia. Dengan alasan tersebut, BATAN sebagai lembaga litbang  nuklir di Indonesia perlu mempelajari pembuatan sumber radiasi gamma isotop  137Cs dari larutan hasil pengujian bahan bakar nuklir U3Si2-Al pasca iradiasi. Manfaat isotope 137Cs sangat luas antara lain digunakan dalam menganalisis sampel lingkungan, industri migas, konstruksi, radiografi, perikanan, rumah sakit dan pertambangan. Pembuatan sumber radiasi gamma isotope 137  Cs dimulai dari pengumpulan limbah hasil pengujian PEB U3Si2-Al. Limbah larutan hasil pengujian mengandung isotope 137Cs dan isotop lainnya dikumpulkan menjadi satu dalam botol yang tahan radiasi. Pemungutan isotope 137Cs dari hasil fisi lainnya dilakukan dengan metode penukar kation menggunakan zeolit Lampung. Hasil pemungutan diperoleh padatan 137Cs-zeolit dalam fasa padat dan isotop lainnya berada dalam fasa cair. Padatan 137Cs-zeolit kering kemudian kemudian ditimbang dan diukur aktivitasnya menggunakan spektrometer-. Untuk menjadi sumber radiasi gamma 137Cs, padatan  137Cs-zeolit akan dikemas dengan cara memasukkan ke dalam wadah tertutup (shield source) berbentuk kapsul dari stainless steel oleh PTKMR. ABSTRACTMANUFACTURING OF CS ISOTOP AS GAMMA SOURCE FOR USING IN INDUSTRY. In the post-irradiation examination of fuel element plate (PEB) U3Si2-Al), a solution of high activity as a result of testing nuclear fuel stored in hotcell with enough volume. The solution can not bediscarded as waste because it still contains fission isotopes such as 137Cs, uranium andtransuranium, which has a long half life and dangerous for the environment. This can help theindustry in order to fulfill the needs of a radioactive source in Indonesia, because until now  137Csisotope is derived from foreign industries. In addition, the procurement and transportation ofIsotopes 137Cs require stringent requirements, because they have to get permission from theNational Nuclear Energy Agency (BAPETEN), thus causing the price of high activity 137Cs isotopes becomes expensive to Indonesia. For these reasons, BATAN as nuclear R & D institutions in Indonesia need to study make isotopes 137Cs gamma radiation source, which is contained in the waste from spent fuel test results U3Si2-Al. Isotope C137s can be used very widely, such as in the analysis of environmental samples, the oil and gas industry, construction,radiography, fisheries, hospitals, and mining. Making isotope 137Cs gamma radiation sourcestarting from the collection of waste from the test results PEB U3Si2-Al. Waste solution was collected in a bottle that is resistant to radiation. Collection of 137Cs isotopes of other fission carried out using the method of cation exchange with zeolite Lampung. The results of separation are 137 Cs-zeolite in the solid phase and the other isotopes are in the liquid phase. 137Cs-zeolite solid is then dried and then weighed and measured its activity using a spectrometer-g.137Cs-zeolite solids then packed in sealed containers (shield source) capsule-shaped stainless steel by PTKMR. Keywords: process waste of PEB U3Si2-Al, gamma radioactive, isotope  zeolite Lampung and industry
ANALSIS TERMAL PADUAN AlMgSi UNTUK KELONGSONG BAHAN BAKAR U3Si2-Al DENSITAS TINGGI Aslina Br.Ginting
Urania : Jurnal Ilmiah Daur Bahan Bakar Nuklir Vol 16, No 2 (2010): April 2010
Publisher : website

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17146/urania.2010.16.2.2430

Abstract

ABSTRAK ANALISIS  TERMAL PADUAN AlMgSi  UNTUK  KELONGSONG  BAHAN BAKAR U3Si2-Al DENSITAS TINGGI. Penggunaan bahan bakar nuklir densitas tinggi  harus didukung  dengan penggunaan  kelongsong  yang kompatibel dengan bahan bakar yang dikungkungnya. Hal ini penting mengingat bahan bakar berdensitas tinggi mempunyai kekerasan yang lebih tinggi. Sehingga bila digunakan paduan  AlMg2 sebagai kelongsong bahan bakar densitas tinggi dapat terjadi efek dogbone pada saat proses perolan. Oleh karena itu perlu mencari  alternatif pengganti bahan kelongsong AlMg2 yang digunakan Batan Teknologi pada saat ini. Salah satunya adalah  paduan AlMgSi yang mempunyai sifat kimia, dan sifat fisik lebih baik dari kelongsong AlMg2, sehingga paduan tersebut  dapat menjadi sebagai alternatif  kelongsong bahan bakar densitas  tinggi 4,8 gU/cm3. Pada penelitian ini telah dilakukan analisis sifat kimia dan sifat termal terhadap PEB U3Si2-Al  densitas 4,8 gU/cm3 menggunakan kelongsong AlMgSi dan terhadap PEB U3Si2-Al  densitas 4,8 gU/cm3 menggunakan kelongsong AlMg2. Analisis termal meliputi analisis stabilitas panas, kapasitas panas, entalpi, temperatur lebur ,konduktivitas panas, koefisien muai panjang dan selanjutnya kedua hasil analisisnya dibandingkan. Hasil analisis menunjukkan bahwa kelongsong AlMgSi maupun AlMg2 mempunyai kompatibilitas dengan bahan bakar U3Si2-Al  cukup baik dan stabil terhadap panas hingga temperatur 650oC, diatas temperatur 650oC kelongsong AlMgSi, AlMg2 maupun PEB U3Si2-Al densitas 4,8 gU/cm3 telah mengalami reaksi endotermik. Reaksi endotermik tersebut menunjukkan reaksi peleburan kelongsong AlMgSi, AlMg2 maupun matrik Al. Kelongsong AlMgSi maupun AlMg2 mempunyai temperatur lebur dan entalpi peleburan yang tidak jauh berbeda tetapi kelongsong AlMgSi mempunyai kapasitas panas, konduktivitas panas lebih besar serta mempunyai koefisien muai panjang lebih kecil dibanding kelongsong AlMg2. Dari hasil  analisis termal menunjukkan bahwa PEB U3Si2-Al  densitas  4,8 gU/cm3 menggunakan kelongsong AlMgSi jauh lebih baik dibanding PEB U3Si2-Al  densitas 4,8 gU/cm3 menggunakan kelongsong AlMg2. Hasil analisis karakter kelongsong AlMgSi ini diharapkan  dapat menjadi sebagai masukan kepada kelompok modeling dan fabrikator bahan bakar reaktor riset  PEB U3Si2-Al untuk mendesain elemen bakar reaktor riset dengan muatan uranium yang tinggi menggunakan kelongsong AlMgSi. Kata Kunci : Sifat  termal, bahan bakar U3Si2-Al, densitas 4,8 gU/cm3,Kelongsong AlMgSi.   ABSTRACT THERMAL ANALISYS OF AlMgSi ALLOY FOR U3Si2-Al HIGH DENSITY FUEL CLADDING. The utilization of high-density nuclear fuel must be supported by cladding material that is compatible with the fuel it contains considering that high-density fuel possesses greater hardness. If AlMg2 alloy is used as high density fuel cladding, dog bone effect may occur during rolling. For this reason, alternate cladding material is being investigated to replace the AlMg2 cladding currently employed by Batan Teknologi. One of the candidates is AlMgSi alloy which exhibits better chemical and physical properties compared to AlMg2 cladding, thus the alloy is regarded as suitable for high uranium density of 4.8 gU/cm3. In addition, the fabrication process of AlMgSi alloy as a cladding for U3Si2-Al fuel plate with a uranium density of 4.8 gU/cm3 is almost similar as that of the AlMg2 cladding. In this experiment have been done thermal and chemical of properties  toward U3Si2-Al fuel plates with density of 4.8 gU/cm3 used AlMgSi cladding and U3Si2-Al fuel plates used AlMg2 cladding. To establish the better chemical and thermal  properties of the AlMgSi cladding compared to the AlMg2 cladding, a range of analyses are performed on U3Si2-Al fuel plates having a uranium density of 4.8 gU/cm3 that employ AlMgSi and AlMg2 claddings. These include thermal analyses, i.e. heat stability, heat capacity, melting enthalpy, melting point, thermal conductivity, and coefficient of linear thermal expansion, the two sets of results are compared. It is revealed that both AlMgSi and AlMg2 claddings show good compatibility with U3Si2-Al fuel and also good thermal stability up to 650 °C, above which the AlMgSi, AlMg2 cladding and U3Si2-Al fuel plate having a uranium density of 4.8 gU/cm3 undergo endothermic reaction. The endothermic reaction signifies melting of AlMgSi, AlMg2 and Al matrix. AlMgSi and AlMg2 claddings have similar melting point and melting enthalpy, but AlMgSi cladding has greater heat capacity, and thermal conductivity as well as smaller coefficient of linear thermal expansion compared to AlMg2 cladding. The results from thermal analysis  show that U3Si2-Al fuel plate with a uranium density of 4.8 gU/cm3 that employs AlMgSi cladding is significantly better than the one employing AlMg2 cladding. The characteristics of the AlMgSi cladding obtained in this study are expected to serve as inputs to the modeling group and fabricator of research reactor fuel, i.e. U3Si2-Al fuel plate, in designing research reactor fuel with a high uranium density using AlMgSi cladding. Keywords: Thermal properties, U3Si2-Al fuel, uranium density of 4.8 g/cm3, AlMgSi, cladding
PENGARUH UNSUR Zr PADA PADUAN U-Zr DAN INTERAKSINYA DENGAN LOGAM Al TERHADAP PEMBENTUKAN FASA Masrukan .; Aslina Br.Ginting
Urania : Jurnal Ilmiah Daur Bahan Bakar Nuklir Vol 14, No 4 (2008): Oktober 2008
Publisher : website

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17146/urania.2008.14.4.2569

Abstract

ABSTRAK PENGARUH  UNSUR Zr  PADA PADUAN U-Zr DAN   INTERAKSINYA  DENGAN LOGAM Al   TERHADAP PEMBENTUKAN FASA. Telah dilakukan penelitian tentang pengaruh penambahan unsur Zr pada paduan U-Zr dan interaksinya dengan logam Al  terhadap pembentukan fasa.  Mula-mula paduan U-Zr dengan komposisi Zr masing-masing 2, 6, 10, 14 dan 55 %  ditambah logam Al dengan perbandingan U-Zr dan logam Al sebagai satu dibanding setengah. Setelah dicampur dengan logam Al selanjutnya dikenai pengujian dengan menggunakan DTA pada interval temperatur dari temperatur kamar hingga 1000 oC. Penambahan logam Al dimaksudkan untuk mensimulasikan kondisi bahan bakar pada saat digunakan di reaktor. Adanya logam Al pada paduan U-Zr akan mengakibatkan terjadinya reaksi termokimia dan terbentuknya fasa-fasa, dimana fasa yang terbentuk akan mempengaruhi kinerja bahan bakar di dalam reaktor.  Penelitian ini bertujuan untuk   mengetahui reaksi termokimia antara paduan U-Zr dengan logam Al sebagai matriks.  Hasil analisis menunjukkan terjadinya pembentukan fasa dari fasa α + δ menjadi α + γ Zr  pada semua komposisi, dan pada pembentukan fasa tersebut pada 55 %Zr  membutuhkan panas yang paling besar dibandingkan pada  2, 6, 10, 14 % Zr.   Selain itu, dapat diketahui bahwa  pada U-Zr dengan kandungan  Zr masing-masing  2, 6, 10 dan 14 terbentuk fasa berturut-turut  α, γ Zr, β,  δ, UAl2,  γU dan  ZrAl2,  sedangkan pada 55 % Zr jumlah fasa yang terbentuk  lebih sedikit yakni  fasa   α, γ Zr, β,  UAl2,  dan ZrAl2. Pembentukan fasa pada  2,6,10 dan  14 %  Zr  berlangsung  pada temperatur   yang berbeda meskipun fasa yang terbentuk sama. Panas yang dibutuhkam untuk proses pembentukan fasa mengalami kenaikan  apabila  persen Zr naik,  misalnya untuk 2 % berat  Zr panas yang dibutuhkan untuk membentuk β + δ  sebesar 0,8721 cal/g akan menjadi sebesar 3,0201 cal/g apabila konsentrasi  Zr sebesar 10 % berat. Kata kunci : Paduan U-Zr, Interaksi, logam Al dan  fasa.   ABSTRACT INFLUENCE of Zr ELEMENT AT U-Zr ALLOYS AND IT   INTERACTION WITH THE  Al  METAL TO PHASE FORMING. Have been done research of  Zr element addition influence at  U-Zr alloys and its interaction with the Al metal  to phase forming.  Originally,   U-Zr alloy with the composition of 2, 6, 10, 14 and 55 % w Zr respectively  are  added  by  Al metal with the comparison of U-Zr and Al metal  as one compared to  half. After the U metal  are  mixed with Al metal,   then it  physical properties tested  by using DTA at temperature interval from room  temperature up to  1000 oC. Addition of Al metal intended  to  the simulation of fuel condition at the time of used in reactor. The Al  metal  in   U-Zr alloy  will result the thermochemical reaction  and phases forming, where the phase formed will influence the fuel performance in reactor. This research  intend  to know the thermochemical reaction between U-Zr alloy with the Al metal as matrix. Result of analysis show the phases  forming  from α + δ to α + γZr at all of composition, and at the phase forming at 55 % Zr require the biggest heat if it  compared with  2, 6, 10, 14 %  weight Zr. Others, knowable that at U-Zr alloy with  Zr concentration  of  2, 6, 10 and 14 are pahses  formed  Zr α, γ Zr, β,  δ, UAl2,  γU and  ZrAl2, while at 55 % w Zr  the  total phases  formed  slimmer,   that are α, γ Zr, β, UAl2,  and  ZrAl2. Phases forming  at  2,6,10 and 14 %  w Zr   take place at  different temperature,  although the phases  formed  are same. The heat  that  is needed to phases forming process  will  increase  if  Zr percent concentration  is increase, as example for  2 % w Zr the heat  required to form β + δ   is  0,8721 cal / g will become  3,0201 cal / g  if Zr content equal to 10 % w Zr. Keyword :  U-Zr alloy, Interaction,  Al metal  and phase.