Atriyon Julzarika
Unknown Affiliation

Published : 8 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 8 Documents
Search

PENGINDERAAN JAUH UNTUK PENDETEKSIAN AWAL POTENSI TEMBAGA DI SUMBAWA Atriyon Julzarika
JURNAL RISET GEOLOGI DAN PERTAMBANGAN Vol 28, No 1 (2018)
Publisher : Indonesian Institute of Sciences

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1571.866 KB) | DOI: 10.14203/risetgeotam2018.v28.434

Abstract

Tembaga merupakan salah satu jenis mineral penting yang memiliki banyak fungsi dalam berbagai aplikasi. Penelitian ini bertujuan untuk pendeteksian awal tembaga menggunakan data penginderaan jauh. Lokasi penelitian terletak di Sumbawa. Data penginderaan jauh yang digunakan berupa Landsat, ALOS Palsar, X SAR, SRTM C, dan Satelit Geodesi. Landsat digunakan untuk ekstraksi parameter geologi berupa penutup lahan dan perubahannya, bentuk lahan, dan alterasi hidrotermal. ALOS PALSAR, X SAR, dan SRTM C digunakan untuk pembuatan DTM (Digital Terrain Model). Integrasi DTM berguna untuk ekstraksi parameter geologi lainnya berupa struktur dan formasi geologi. DTM yang digunakan memiliki akurasi vertikal + 1,5 m. Data Satelit Geodesi bisa digunakan untuk ekstraksi gaya berat, medan magnet, geodinamika, serta densitas batuan. Berbagai parameter geologi ini diekstraksi dengan metode VIDN, integrasi, dip and strike, interferometri, backscattering, alterasi hidrotermal, geodesi fisis, dan klasifikasi digital berbasis objek. Semua parameter geologi yang telah diekstrak dikorelasikan antar data, sehingga bisa digunakan untuk deteksi potensi tembaga. Informasi geospasial deteksi awal tembaga dan ekstraksi parameter geologinya merupakan produk yang dihasilkan dari penelitian ini. Informasi geospasial ini menggunakan referensi ketelitian ASPRS Accuracy Data for Digital Geospatial Data.Copper is one of the essential mineral that has many functions in variety of applications. This research aimed to detect the copper potential using remote sensing data. The research location is Sumbawa. Remote sensing data used were Landsat, ALOS PALSAR, X SAR, SRTM C, and Satellite Geodesy. Landsat was used for geological parameters extraction such as land cover and its changes, geomorphology, landforms, and hydrothermal alteration. ALOS PALSAR, X SAR and SRTM C were used for height model integration (DTM). This DTM was useful for the other geological parameters extraction, such as geological structures and formations. DTM used has vertical accuracy + 1,5 m. Geodesy Satellite data can be used for the extraction of gravity, magnetic field, geodynamics, and rock densities. These various geological parameters were extracted by VIDN, integration, dip and strike, interferometry, backscattering, hydrothermal alteration, physical geodesy, and classification based digital objects. All of those parameters were then correlated for copper potential detection. The results obtained were geospatial information of copper potential and geological parameters at a scale of 1: 50.000 with reference ASPRS Accuracy Data for Digital Geospatial Data. 
GEOSTATISTICAL TEST USING LEAST SQUARE ADJUSTMENT COMPUTATION TO OBTAIN THE REDUCTION PARAMETER FOR DSM TO DEM CONVERSION (Study of Case: Cilacap, Indonesia) Atriyon Julzarika
International Journal of Remote Sensing and Earth Sciences (IJReSES) Vol 7, No 1 (2010): Vol 7,(2010)
Publisher : National Institute of Aeronautics and Space of Indonesia (LAPAN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1299.981 KB) | DOI: 10.30536/j.ijreses.2010.v7.a1538

Abstract

Abstract. ALOS satellite is one of the natural resources satellites that can be used for 3D model applications. The problems of 3D model generation based on satellite imagery are the model always in Digital Surface Model (DSM), not in Digital Elevation Model (DEM). The reference system of 3D model that are produced by ALOS satellite image is still as surface for z axis, whereas x axis and y axis has been closed to 2D reference system in some certain datum and system of map projection. Therefore, it needs a research to observe the accuracy and the precision of ALOS satellite data using a least square adjustment in parameter methods. The results of this research will be used as a reference for next research to find a way for changing DSM from ALOS satellite image to be DEM automatically.
BATHYMETRY EXTRACTION FROM SPOT 7 SATELLITE IMAGERY USING RANDOM FOREST METHODS Kuncoro Teguh Setiawan; Nana Suwargana; Devica Natalia Br. Ginting; Masita Dwi Mandini Manessa; Nanin Anggraini; Syifa Wismayati Adawiah; Atriyon Julzarika; Surahman Surahman; Syamsu Rosid; Agustinus Harsono Supardjo
International Journal of Remote Sensing and Earth Sciences (IJReSES) Vol 16, No 1 (2019)
Publisher : National Institute of Aeronautics and Space of Indonesia (LAPAN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (819.189 KB) | DOI: 10.30536/j.ijreses.2019.v16.a3085

Abstract

The scope of this research is the application of the random forest method to SPOT 7 data to produce bathymetry information for shallow waters in Indonesia. The study aimed to analyze the effect of base objects in shallow marine habitats on estimating bathymetry from SPOT 7 satellite imagery. SPOT 7 satellite imagery of the shallow sea waters of Gili Matra, West Nusa Tenggara Province was used in this research. The estimation of bathymetry was carried out using two in-situ depth-data modifications, in the form of a random forest algorithm used both without and with benthic habitats (coral reefs, seagrass, macroalgae, and substrates). For bathymetry estimation from SPOT 7 data, the first modification (without benthic habitats) resulted in a 90.2% coefficient of determination (R2) and 1.57 RMSE, while the second modification (with benthic habitats) resulted in an 85.3% coefficient of determination (R2) and 2.48 RMSE. This research showed that the first modification achieved slightly better results than the second modification; thus, the benthic habitat did not significantly influence bathymetry estimation from SPOT 7 imagery.
UTILIZATION OF SAR AND EARTH GRAVITY DATA FOR SUB BITUMINOUS COAL DETECTION Atriyon Julzarika; Kuncoro Teguh Setiawan
International Journal of Remote Sensing and Earth Sciences (IJReSES) Vol 11, No 2 (2014)
Publisher : National Institute of Aeronautics and Space of Indonesia (LAPAN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1297.886 KB) | DOI: 10.30536/j.ijreses.2014.v11.a2612

Abstract

Remote sensing data can be used for geological and mining applications, such as coal detection. Coal consists of five classes of Anthracite, Bituminous, Sub-Bituminous, Lignite coal and Peat coal. In this study, the type of coal that is discussed is Sub bituminous, Lignite coal, and peat coal. This study aims to detect potential sub bituminous using Synthetic Aperture Radar (SAR) data, and earth gravity. One type of remote sensing data to detect potential sub bituminous, lignite coal and peat coal are SAR data and satellite data Geodesy. SAR data used in this study is ALOS PALSAR. SAR data is used to predict the boundary between Lignite coal with Peat coal. The method used is backscattering. In addition to the SAR data is also used to make height model. The method used is interferometry. Geodetic satellite data is used to extract the value of the earth gravity and geodynamics. The method used is physical geodesy. Potential sub-bituminous coal can be known after the correlation between the predicted limits lignite coal-peat coal by the earth gravity, geodynamics, and height model. Volume predictions of potential sub bituminous can be known by calculating the volume using height model and transverse profile test. The results of this study useful for preliminary survey of geological in mining exploration activities.
UTILIZATION OF IKONOS IMAGE AND SRTM AS ALTERNATIVE CONTROL POINT REFERENCE FOR ALOS DEM GENERATION Bambang Trisakti; Gathot Winarso; Atriyon Julzarika
International Journal of Remote Sensing and Earth Sciences (IJReSES) Vol 7, No 1 (2010): Vol 7,(2010)
Publisher : National Institute of Aeronautics and Space of Indonesia (LAPAN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (4209.066 KB) | DOI: 10.30536/j.ijreses.2010.v7.a1539

Abstract

Abstract. Digital Elevation Model (DEM) was generated from Advanced LandObservation Satellite - The Panchromatic Remote-Sensing Instrument for Stereo Mapping(ALOS PRISM) stereo data using image matching and collinear correlation based on LeicaPhotogrametry Suite (LPS) software. The process needs three dimension of Ground ControlPoint (GCP) or Control Point (CP) XYZ as input data for collinear correlation to determineexterior orientation coefficient. The main problem of the DEM generation is the difficultyto obtain the accurate field measurement GCP in many areas. Therefore, another alternativeCP sources are needed. The aim of this research was to study the possibility of (IKONOS)image and Shuttle Radar Topography Mission (SRTM) X-C band to be used as CPreference for ALOS PRISM DEM generation. The study area was Sragen and Bandungregion. The DEM of each study area was generated using 2 methods: generated using fieldmeasurement GCPs taken by differential GPS and generated using CPs from IKONOSimage (XY coordinat) and SRTM for (Z elevation). The generated DEMs were compared.The accuracy of both DEMs were evaluated using another field measurement GCPs. Theresult showed that the generated DEM using CPs from IKONOS and SRTM X-C hadrelatively same height pattern and height distribution along transect line with the DEMusing GCPs. The absolute accuracy of the DEM using CPs was about 60% - 80% lessaccuracy comparing to the DEM using GCPs. This research showed that IKONOS imageand SRTM X-C band can be considered as good alternative CP source to generate highaccuracy DEM from ALOS PRISM stereo data.
CAN THE PEAT THICKNESS CLASSES BE ESTIMATED FROM LAND COVER TYPE APPROACH? Bambang Trisakti; Atriyon Julzarika; Udhi C. Nugroho; Dipo Yudhatama; Yudi Lasmana
International Journal of Remote Sensing and Earth Sciences (IJReSES) Vol 14, No 2 (2017)
Publisher : National Institute of Aeronautics and Space of Indonesia (LAPAN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1051.954 KB) | DOI: 10.30536/j.ijreses.2017.v14.a2677

Abstract

Indonesia has been known as a home of the tropical peatlands. The peatlands are mainly in Sumatera, Kalimantan and Papua Islands. Spatial information on peatland depth is needed for the planning of agricultural land extensification. The research objective was to develop a preliminary estimation model of peat thickness classes based on land cover approach and analyse its applicability using Landsat 8 image. Ground data, including land cover, location and thickness of peat, were obtained from various surveys and peatlands potential map (Geology Map and Wetlands Peat Map). The land cover types were derived from Landsat 8 image. All data were used to build an initial model for estimating peat thickness classes in Merauke Regency. A table of relationships among land cover types, peat potential areas and peat thickness classes were made using ground survey data and peatlands potential maps of that were best suited to ground survey data. Furthermore, the table was used to determine peat thickness classes using land cover information produced from Landsat 8 image. The results showed that the estimated peat thickness classes in Merauke Regency consist of two classes, i.e., very shallow peatlands and shallow peatlands. Shallow peatlands were distributed at the upper part of Merauke Regency with mainly covered by forest. In comparison with Indonesia Peatlands Map, the number of classes was the two classes. The spatial distribution of shallow peatlands was relatively similar for its precision and accuracy, but the estimated area of shallow peatlands was greater than the area of shallow peatlands from Indonesia Peatlands Map. This research answered the question that peat thickness classes could be estimated by the land cover approach qualitatively. The precise estimation of peat thickness could not be done due to the limitation of insitu data.  
DEM GENERATION FROM STEREO ALOS PRISM AND ITS QUALITY IMPROVEMENT Bambang Trisakti; Atriyon Julzarika
International Journal of Remote Sensing and Earth Sciences (IJReSES) Vol 8, (2011)
Publisher : National Institute of Aeronautics and Space of Indonesia (LAPAN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1333.66 KB) | DOI: 10.30536/j.ijreses.2011.v8.a1740

Abstract

Digital elevation mode (DEM) is important data for supporting many activities. One of DEM generation methods is photogrametry of optical stereo data based on image matching and collinear correlation. The problem of DEM from optical stereo data is bullseye due to low contrast in relatively flat area and cloud cover. The research purpose is to generate DEM from ALOS PRISM stereo data level 1B2R and improve the quality of the DEM. DEM was generated using Leica Photogrametry Suite (LPS) software. The study area is located in Sragen district and its vicinity. The process needed three dimension of Ground Control Point (GCP) XYZ, as input data for collinear correlation. Ground measurement was conducted using differential GPS to collect 30 GCPs that used for input (21 GCPs) and for accuracy evaluation (9 GCPs). The generated DEM has good detail (10 m), but it has bullseye which mostly occurred in relatively flat area. The quality improvement was carried out by combining the DEM with SRTM DEM (30 m) using DEM fusion method. Both DEMs were processed for geoids correction (EGM 2008), co-registration and histogram normalization. The fusion method was conducted by considering height error map (HEM) of each DEM. The quality of fused DEM was evaluated by comparing HEM, the number of bullseye, and vertical accuracy before and after the fusion. The result shows that DEM fusion can preserve detail information of the DEM and significantly reduce the bullseye (decreasing more than 66% of bullseye). It also shows the improvement (from 7.6 m to 7.3 m) of vertical accuracy. Keywords: Digital Elevation model, Optical stereo data, ALOS PRISM, DEM fusion, Bullseye
Studi Geobiofisik Pantai Pink Sebagai Wisata Laut di Lombok Timur Media Fitri Isma Nugraha; Atriyon Julzarika
Prosiding Simposium Nasional Kelautan dan Perikanan Vol. 5 (2018): PROSIDING SIMPOSIUM NASIONAL V KELAUTAN DAN PERIKANAN UNHAS
Publisher : Fakultas Ilmu Kelautan dan Perikanan (FIKP), Universitas Hasanuddin

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (709.943 KB)

Abstract

Lombok merupakan salah satu pulau di Provinsi Nusa Tenggara Barat, dengan segala keunikan alam teresterial dan maritimnya. Ada beberapa pulau kecil yang terdapat di sekitar Pulau Lombok. Dalam bahasa lokal, pulau disebut dengan Gili. Salah satu pulau yang terkenal adalah Gili Trawangan. Akan tetapi banyak gili lainnya yang memiliki daya tarik dan eksotisme tersendiri, diantaranya adalah gili Patelu dan gili Gambir, dikenal dengan pantai pink. Observasi dilakukan di Gili Patelu dan gili Gambir Lombok timur pada bulan Desember 2017 – Januari 2018. Gili Patelu dan gili gambir dikenal karena butiran pasirnya yang berwarna pink, yang berasal dari serpihan coral Tubipora musica Linnaeus 1758. Butiran coral ini memberikan ciri dan sensasi tersendiri bagi wisata bahari. Penelitian ini bertujuan untuk mengetahui informasi sapsial yang berkaitan dengan keunikan dan daya tarik pantai Pink Lombok Timur sebagai destinasi wisata laut. Hasil dari penelitian ini berupa kawasan Lombok Timur memikili daya Tarik yang unik dengan keberadaan pasir yang berwarna pink. Diperlukan sebuah pengelolaan wisata bahari yang berlandaskan ekosistim dan lingkungan. Hasil penelitian ini mendapatkan data ekosistim untuk pengelolaan wisata bahari dan lingkungan maritime. Kata Kunci: Gili Patelu, Gili Gambir, lombak timur, Tubipora musica,Wisata bahari,