Claim Missing Document
Check
Articles

Found 3 Documents
Search

Estimating Power Needed to Fuel Electric Paratransits in Bandung Huda, Naili; Hassall, Kim Peter; Muharam, Aam; Ismail, Kristian
Journal of Mechatronics, Electrical Power and Vehicular Technology Vol 6, No 2 (2015)
Publisher : Research Centre for Electrical Power and Mechatronics, Indonesian Istitutes of Sciences

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (485.926 KB) | DOI: 10.14203/j.mev.2015.v6.123-128

Abstract

This is the preliminary finding of a study elaborating the total energy consumption when paratransits in Bandung are altered into electric and the scenario to fulfill it. Therefore, there are lots to be done further concerning result of this initial research, of which will be discussed in another publication. In this paper calculation was done to find out the volume of power needed to fuel electric paratransits in Bandung. Steps carried out include computing total energy consumption for all paratransits, clustering stations from classified routes established by local Department of Transport, and estimating the electricity demand in every clustered station. Data used for this study was acquired from Badan Pusat Statistik Kota Bandung and PT PLN DJA APD Jawa Barat and Banten. A total demand of 61.12 MWh per month will surface to charge the total of 5,521 paratransits from 38 available routes in 15 clustered stations under the assumptions that all paratransits only make 6 return travels per day, operate 30 days per month, and use batteries with 50% State of Charge.
Economic Valuation of Hypothetical Paratransit Retrofitting Huda, Naili; Hassall, Kim Peter; Kaleg, Sunarto -; Hapid, Abdul -
Journal of Mechatronics, Electrical Power and Vehicular Technology Vol 6, No 1 (2015)
Publisher : Research Centre for Electrical Power and Mechatronics, Indonesian Istitutes of Sciences

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (3522.396 KB) | DOI: 10.14203/j.mev.2015.v6.49-56

Abstract

This paper describes a feasibility analysis of conventional and retrofitted paratransits, comparing economic performance of conventional paratransit with those using lead acid and lithium batteries. Research object is Dago-Kalapa paratransit in Bandung, West Java, travelling the distance of 11 km in town, under 8 peak hour operation. After calculating the estimated annual cost and benefit; net present value (NPV), payback period (PBP) and internal rate of return (IRR) then were quantified to provide feasibility description of those three paratransits. In addition, a sensitivity analysis regarding discount rate, gasoline price and battery price is given to offer broader sense of factors embraced. It is found that both gasoline and lead acid paratransit have big NPVs with only slight differences, while lithium paratransit has negative NPV. This phenomenon applies to their PBPs and IRRs as well. Only when gasoline costs reaches IDR 15,000 will electric paratransit prevails over conventional one. Thus, it can be inferred that at the moment, paratransit runs with gasoline is still the most cost effective compared to its counterparts. However, starting retrofitting from now is endorsed due to its environmental benefit.
Modification of Surface Roughness and Area of FeCrAl Substrate for Catalytic Converter using Ultrasonic Treatment Putrasari, Yanuandri; Untoro, P; Hasan, Sulaiman; Huda, Naili; Sebayang, Darwin
Journal of Mechatronics, Electrical Power and Vehicular Technology Vol 1, No 2 (2010)
Publisher : Research Centre for Electrical Power and Mechatronics, Indonesian Istitutes of Sciences

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (931.952 KB) | DOI: 10.14203/j.mev.2010.v1.53-60

Abstract

Surface roughness and area play important role especially in deposition and reaction of the catalyst in the catalytic converter substrate. The aim of this paper is to show the modification of surface roughness and area of FeCrAl substrate for catalytic converter using ultrasonic method. The method was conducted by agitating the FeCrAl in 10 minutes 35 kHz ultrasonic cleaning bath. The  surface roughness, morphology, and chemical components of FeCrAl catalytic converter substrate after ultrasonic treatment were analyzed using atomic force microscope (AFM) and examined with scanning electron microscope (SEM) in combination with energy dispersive X-ray spectroscopy (EDS). The ultrasonic treatment assisted with Al2O3 powders successfully increased the roughness and surface area of FeCrAl better than SiC powders.Â