Arlisa Wulandari
Universitas Jenderal Achmad Yani

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Post-Stroke identification of EEG signals using recurrent neural networks and long short-term memory Wanodya Sansiagi; Esmeralda Contessa Djamal; Daswara Djajasasmita; Arlisa Wulandari
International Journal of Advances in Intelligent Informatics Vol 7, No 2 (2021): July 2021
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/ijain.v7i2.512

Abstract

Stroke often causes disability, so patients need rehabilitation for recovery. Therefore, it is necessary to measure its effectiveness. An Electroencephalogram (EEG) can capture the improvement of activity in the brain in stroke rehabilitation. Therefore, the focus is on the identification of several post-rehabilitation conditions. This paper proposed identifying post-stroke EEG signals using Recurrent Neural Networks (RNN) to process sequential data. Memory control in the use of RNN adopted Long Short-Term Memory. Identification was provided out on two classes based on patient condition, particularly "No Stroke" and "Stroke". EEG signals are filtered using Wavelet to get the waves that characterize a stroke. The four waves and the average amplitude are features of the identification model. The experiment also varied the weight correction, i.e., Adaptive Moment Optimization (Adam) and Stochastic Gradient Descent (SGD). This research showed the highest accuracy using Wavelet without amplitude features of 94.80% for new data with Adam optimization model. Meanwhile, the feature configuration tested effect shows that the use of the amplitude feature slightly reduces the accuracy to 91.38%. The results also show that the effect of the optimization model, namely Adam has a higher accuracy of 94.8% compared to SGD, only 74.14%. The number of hidden layers showed that three hidden layers could slightly increase the accuracy from 93.10% to 94.8%. Therefore, wavelets as extraction are more significant than other configurations, which slightly differ in performance. Adam's model achieved convergence in earlier times, but the speed of each iteration is slower than the SGD model. Experiments also showed that the optimization model, number of epochs, configuration, and duration of the EEG signal provide the best accuracy settings.