p-Index From 2019 - 2024
1.288
P-Index
Rismawati Ramdani
Department Of Mathematics, Faculty Of Sciences And Technologies, Universitas Islam Negeri Sunan Gunung Djati, Jalan A.H. Nasution No. 105,

Published : 12 Documents
Claim Missing Document
Articles

## Title

### Found 12 Documents Search

On The Total Edge and Vertex Irregularity Strength of Some Graphs Obtained from Star Ramdani, Rismawati; Salman, A.N.M; Assiyatun, Hilda
Journal of the Indonesian Mathematical Society Volume 25 Number 3 (November 2019)
Publisher : IndoMS

#### Abstract

Let $G=(V(G),E(G))$ be a graph and $k$ be a positive integer. A total $k$-labeling of $G$ is a map $f: V(G)\cup E(G)\rightarrow \{1,2,\ldots,k \}$. The edge weight $uv$ under the labeling $f$ is denoted by $w_f(uv)$ and defined by $w_f(uv)=f(u)+f(uv)+f(v)$. The vertex weight $v$ under the labeling $f$ is denoted by $w_f(v)$ and defined by $w_f(v) = f(v) + \sum_{uv \in{E(G)}} {f(uv)}$. A total $k$-labeling of $G$ is called an edge irregular total $k$-labeling of $G$ ifÂ  $w_f(e_1)\neq w_f(e_2)$ for every two distinct edges $e_1$ and $e_2$Â  in $E(G)$.Â  The total edge irregularity strength of $G$, denoted by $tes(G)$, is the minimum $k$ for which $G$ has an edge irregular total $k$-labeling.Â  A total $k$-labeling of $G$ is called a vertex irregular total $k$-labeling of $G$ ifÂ  $w_f(v_1)\neq w_f(v_2)$ for every two distinct vertices $v_1$ and $v_2$ in $V(G)$.Â  The total vertex irregularity strength of $G$, denoted by $tvs(G)$, is the minimum $k$ for which $G$ has a vertex irregular total $k$-labeling.Â  In this paper, we determine the total edge irregularity strength and the total vertex irregularity strength of some graphs obtained from star, which are gear, fungus, and some copies of stars.
Analisis Pengukuran Produk HKZL PT.Gradien Manufaktur Indonesia Menggunakan Multivariat Gage, Repeatability and Reproducibility (GRR) Melalui Analisis Faktor Selvi Marcelina; Asep Solih Awalluddin; Arief Fathcul Huda; Rismawati Ramdani; Esih Sukaesih
KUBIK Vol 6, No 2 (2021): KUBIK: Jurnal Publikasi Ilmiah Matematika
Publisher : Jurusan Matematika, Fakultas Sains dan Teknologi, UIN Sunan Gunung Djati Bandung

#### Abstract

Measurement data is often used in determining the quality of a product. Some of the results in measurement present multivariate properties, meaning that there are many characteristics of quality. Many variables are measured to be used as a reference in improving product quality on the company's predetermined standards. But in reality, there are variations in the size or size of products that do not meet the standard of measurement used by the company. In this case, the correlation structure between quality characteristics is often overlooked. Variables that correlate in a group, but with relatively small correlations between other groups are more suitable tasks for factor analysis. Therefore, to solve The purpose of multivariate GRR through factor analysis is to identify the covariance structure between several quality characteristics in improving product quality using multivariate Gage, Repeatability and Reproducibility (GRR) through factor analysis, and find out if the HKZL product measurement system is in PT. Indonesia's Manufacturing Gradient is accepted or does not use the multivariate Gage, Repeatability and Reproducibility (GRR) method through factor analysis. In practice, the analysis step has been prepared and applied to the measurement of HKZL products in PT. Indonesian Manufacturing Gradient. The results were obtained from the measurement system on HKZL products in PT. The Indonesian Manufacturing Gradient is not accepted, meaning that the resulting product is HKZL has quality beyond the company's standards (quality standards), so it can be concluded that the HKZL product making machine is in poor condition to use.
Pelabelan Super Graceful pada Graf Caterpillar Nisa Nur Arafah; Rismawati Ramdani; Arief Fatchul Huda
KUBIK Vol 1, No 1 (2015): KUBIK : Jurnal Publikasi Ilmiah Matematika
Publisher : Jurusan Matematika, Fakultas Sains dan Teknologi, UIN Sunan Gunung Djati Bandung

#### Abstract

NILAI TOTAL KETAKTERATURAN TOTAL DARI DUA COPY GRAF BINTANG Rismawati Ramdani
JURNAL ISTEK Vol 8, No 2 (2014): ISTEK
Publisher : JURNAL ISTEK

#### Abstract

Misalkan graf dan adalah suatu bilangan bulat positif. Pelabelan- total pada G adalah suatu pemetaan . Bobot sisi di bawah pemetaan , dinotasikan dengan dan didefinisikan sebagai . Bobot titik di bawah pemetaan , dinotasikan dengan dan didefinisikan sebagai Suatu pelabelan- total pada dikatakan tak teratur sisi atau tak teratur titik, berturut-turut, jika bobot setiap sisi berbeda atau bobot setiap titik berbeda. Nilai total ketakteraturan sisi dari , dinotasikan dengan , adalah nilai terkecil sehingga suatu graf G memiliki pelabelan- total tak teratur sisi. Nilai total ketakteraturan titik dari , dinotasikan dengan , adalah nilai terkecil sehingga suatu graf G memiliki pelabelan- total tak teratur titik. Dua pelabelan tersebut diperkenalkan oleh Ba a, Jendro , Miller, dan Ryan pada tahun 2007. Selanjutnya, Marzuki, Salman, dan Miller mengkombinasikan kedua pelabelan di atas ke dalam suatu pelabelan baru yang dinamai pelabelan- total tak teratur total. Suatu pelabelan- total pada dikatakan tak teratur total, jika bobot setiap sisi berbeda dan bobot setiap titik berbeda. Nilai total ketakteraturan total dari , dinotasikan dengan , adalah nilai terkecil sehingga memiliki pelabelan- total tak teratur total. Pada makalah ini, ditentukan nilai total ketakteraturan total dari dua copy graf bintang.
Total Vertex Irregularity Strength dari Graf Buku Rismawati Ramdani
Matematika Vol 10, No 1 (2011): Jurnal Matematika
Publisher : Universitas Islam Bandung

#### Abstract

AbstrakPelabelan total vertex irregular dari suatu graf, dengan  titik dan  sisi, adalah pemetaan  yang memenuhi  berbeda untuk setiap . Nilai disebut bobot dari titik  Total vertex irregularity strength dari  dinotasikan dengan  adalah  terkecil sehingga  memiliki pelabelan total vertex irregular. Pada makalah ini, dikaji pelabelan total vertex irregular pada graf buku . Hasil utama yang diperoleh dari penelitian ini adalah . Kata kunci: pelabelan total vertex irregular, total vertex irregularity strength, graf buku .
On The Total Edge and Vertex Irregularity Strength of Some Graphs Obtained from Star Rismawati Ramdani; A.N.M Salman; Hilda Assiyatun
Journal of the Indonesian Mathematical Society Volume 25 Number 3 (November 2019)
Publisher : IndoMS

#### Abstract

Let $G=(V(G),E(G))$ be a graph and $k$ be a positive integer. A total $k$-labeling of $G$ is a map $f: V(G)\cup E(G)\rightarrow \{1,2,\ldots,k \}$. The edge weight $uv$ under the labeling $f$ is denoted by $w_f(uv)$ and defined by $w_f(uv)=f(u)+f(uv)+f(v)$. The vertex weight $v$ under the labeling $f$ is denoted by $w_f(v)$ and defined by $w_f(v) = f(v) + \sum_{uv \in{E(G)}} {f(uv)}$. A total $k$-labeling of $G$ is called an edge irregular total $k$-labeling of $G$ if  $w_f(e_1)\neq w_f(e_2)$ for every two distinct edges $e_1$ and $e_2$  in $E(G)$.  The total edge irregularity strength of $G$, denoted by $tes(G)$, is the minimum $k$ for which $G$ has an edge irregular total $k$-labeling.  A total $k$-labeling of $G$ is called a vertex irregular total $k$-labeling of $G$ if  $w_f(v_1)\neq w_f(v_2)$ for every two distinct vertices $v_1$ and $v_2$ in $V(G)$.  The total vertex irregularity strength of $G$, denoted by $tvs(G)$, is the minimum $k$ for which $G$ has a vertex irregular total $k$-labeling.  In this paper, we determine the total edge irregularity strength and the total vertex irregularity strength of some graphs obtained from star, which are gear, fungus, and some copies of stars.
On The Total Irregularity Strength of Regular Graphs Rismawati Ramdani; A.N.M. Salman; Hilda Assiyatun
Journal of Mathematical and Fundamental Sciences Vol. 47 No. 3 (2015)
Publisher : Institute for Research and Community Services (LPPM) ITB

#### Abstract

Let ðº = (ð‘‰, ð¸) be a graph. A total labeling ð‘“: ð‘‰ âˆª ð¸ â†’ {1, 2, â‹¯ , ð‘˜} iscalled a totally irregular total ð‘˜-labeling of ðº if every two distinct vertices ð‘¥ andð‘¦ in ð‘‰ satisfy ð‘¤ð‘“(ð‘¥) â‰  ð‘¤ð‘“(ð‘¦) and every two distinct edges ð‘¥1ð‘¥2 and ð‘¦1ð‘¦2 in ð¸satisfy ð‘¤ð‘“(ð‘¥1ð‘¥2) â‰  ð‘¤ð‘“(ð‘¦1ð‘¦2), where ð‘¤ð‘“(ð‘¥) = ð‘“(ð‘¥) + Î£ð‘¥ð‘§âˆˆð¸(ðº) ð‘“(ð‘¥ð‘§) andð‘¤ð‘“(ð‘¥1ð‘¥2) = ð‘“(ð‘¥1) + ð‘“(ð‘¥1ð‘¥2) + ð‘“(ð‘¥2). The minimum ð‘˜ for which a graph ðº hasa totally irregular total ð‘˜-labeling is called the total irregularity strength of ðº,denoted by ð‘¡ð‘ (ðº). In this paper, we consider an upper bound on the totalirregularity strength of ð‘š copies of a regular graph. Besides that, we give a dual labeling of a totally irregular total ð‘˜-labeling of a regular graph and we consider the total irregularity strength of ð‘š copies of a path on two vertices, ð‘š copies of a cycle, and ð‘š copies of a prism ð¶ð‘› â–¡ ð‘ƒ2.
On the total vertex irregularity strength of comb product of two cycles and two stars Rismawati Ramdani
Indonesian Journal of Combinatorics Vol 3, No 2 (2019)
Publisher : Indonesian Combinatorial Society (InaCombS)

#### Abstract

Let G = (V(G),E(G)) be a graph and k be a positive integer. A total k-labeling of G is a map f : V ∪ E → {1,2,3,...,k}. The vertex weight v under the labeling f is denoted by w_f(v) and defined by w_f(v) = f(v) + \sum_{uv \in{E(G)}} {f(uv)}. A total k-labeling of G is called vertex irregular if there are no two vertices with the same weight. The total vertex irregularity strength of G, denoted by tvs(G), is the minimum k such that G has a vertex irregular total k-labeling. This labelings were introduced by Baca, Jendrol, Miller, and Ryan in 2007. Let G and H be two connected graphs. Let o be a vertex of H. The comb product between G and H, denoted by G \rhd_o H, is a graph obtained by taking one copy of G and |V(G)| copies of H and grafting the i-th copy of H at the vertex o to the i-th vertex of G. In this paper, we determine the total vertex irregularity strength of comb product of two cycles and two stars.
Analisis Pengukuran Produk HKZL PT.Gradien Manufaktur Indonesia Menggunakan Multivariat Gage, Repeatability and Reproducibility (GRR) Melalui Analisis Faktor Selvi Marcelina; Asep Solih Awalluddin; Arief Fathcul Huda; Rismawati Ramdani; Esih Sukaesih
KUBIK Vol 6, No 2 (2021): KUBIK: Jurnal Publikasi Ilmiah Matematika
Publisher : Jurusan Matematika, Fakultas Sains dan Teknologi, UIN Sunan Gunung Djati Bandung

#### Abstract

Measurement data is often used in determining the quality of a product. Some of the results in measurement present multivariate properties, meaning that there are many characteristics of quality. Many variables are measured to be used as a reference in improving product quality on the company's predetermined standards. But in reality, there are variations in the size or size of products that do not meet the standard of measurement used by the company. In this case, the correlation structure between quality characteristics is often overlooked. Variables that correlate in a group, but with relatively small correlations between other groups are more suitable tasks for factor analysis. Therefore, to solve The purpose of multivariate GRR through factor analysis is to identify the covariance structure between several quality characteristics in improving product quality using multivariate Gage, Repeatability and Reproducibility (GRR) through factor analysis, and find out if the HKZL product measurement system is in PT. Indonesia's Manufacturing Gradient is accepted or does not use the multivariate Gage, Repeatability and Reproducibility (GRR) method through factor analysis. In practice, the analysis step has been prepared and applied to the measurement of HKZL products in PT. Indonesian Manufacturing Gradient. The results were obtained from the measurement system on HKZL products in PT. The Indonesian Manufacturing Gradient is not accepted, meaning that the resulting product is HKZL has quality beyond the company's standards (quality standards), so it can be concluded that the HKZL product making machine is in poor condition to use.
Pelabelan Super Graceful pada Graf Caterpillar Nisa Nur Arafah; Rismawati Ramdani; Arief Fatchul Huda
KUBIK Vol 1, No 1 (2015): KUBIK : Jurnal Publikasi Ilmiah Matematika
Publisher : Jurusan Matematika, Fakultas Sains dan Teknologi, UIN Sunan Gunung Djati Bandung