Benyamin Sapiie
Geological Engineering Study Program, Faculty of Earth Sciences and Technology, ITB

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Analogue Modeling of Oblique Convergent Strike-Slip Faulting and Application to The Seram Island, Eastern Indonesia Benyamin Sapiie; Meli Hadiana
Indonesian Journal on Geoscience Vol 1, No 3 (2014)
Publisher : Geological Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (396.003 KB) | DOI: 10.17014/ijog.1.3.121-134

Abstract

DOI:10.17014/ijog.v1i3.189Sandbox experiment is one of the types of analogue modeling in geological sciences in which the main purpose is simulating deformation style and structural evolution of the sedimentary basin.  Sandbox modeling is one of the effective ways in conducting physically modeling and evaluates complex deformation of sedimentary rocks. The main purpose of this paper is to evaluate structural geometry and deformation history of oblique convergent deformation using of integrated technique of analogue sandbox modeling applying to deformation of Seram Fold-Thrust-Belt (SFTB) in the Seram Island, Eastern Indonesia. Oblique convergent strike-slip deformation has notoriously generated area with structural complex geometry and pattern resulted from role of various local parameters that control stress distributions. Therefore, a special technique is needed for understanding and solving such problem in particular to relate 3D fault geometry and its evolution. The result of four case (Case 1 to 4) modeling setting indicated that two of modeling variables clearly affected in our sandbox modeling results; these are lithological variation (mainly stratigraphy of Seram Island) and pre-existing basement fault geometry (basement configuration). Lithological variation was mainly affected in the total number of faults development.  On the other hand, pre-existing basement fault geometry was highly influenced in the end results particularly fault style and pattern as demonstrated in Case 4 modeling.  In addition, this study concluded that deformation in the Seram Island is clearly best described using oblique convergent strike-slip (transpression) stress system.
Kinematic Analysis of Fault-Slip Data in the Central Range of Papua, Indonesia Benyamin Sapiie
Indonesian Journal on Geoscience Vol 3, No 1 (2016)
Publisher : Geological Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (3509.277 KB) | DOI: 10.17014/ijog.3.1.1-16

Abstract

DOI:10.17014/ijog.3.1.1-16Most of the Cenozoic tectonic evolution in New Guinea is a result of obliquely convergent motion that ledto an arc-continent collision between the Australian and Pacific Plates. The Gunung Bijih (Ertsberg) Mining District(GBMD) is located in the Central Range of Papua, in the western half of the island of New Guinea. This study presentsthe results of detailed structural mapping concentrated on analyzing fault-slip data along a 15-km traverse of theHeavy Equipment Access Trail (HEAT) and the Grasberg mine access road, providing new information concerning thedeformation in the GBMD and the Cenozoic structural evolution of the Central Range. Structural analysis indicatesthat two distinct stages of deformation have occurred since ~12 Ma. The first stage generated a series of en-echelonNW-trending (π-fold axis = 300°) folds and a few reverse faults. The second stage resulted in a significant left-lateralstrike-slip faulting sub-parallel to the regional strike of upturned bedding. Kinematic analysis reveals that the areasbetween the major strike-slip faults form structural domains that are remarkably uniform in character. The changein deformation styles from contractional to a strike-slip offset is explained as a result from a change in the relativeplate motion between the Pacific and Australian Plates at ~4 Ma. From ~4 - 2 Ma, transform motion along an ~ 270°trend caused a left-lateral strike-slip offset, and reactivated portions of pre-existing reverse faults. This action had aprofound effect on magma emplacement and hydrothermal activity.