Efta Yudiarsah
Department Of Physics, Faculty Of Mathematics And Natural Sciences, Universitas Indonesia, Depok 16424

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Perubahan Panjang Lokalisasi dan Kerapatan Keadaan Elektron pada Molekul DNA Poli(dA)-Poli(dT) Karena Medan Magnet Efta Yudiarsah; Andi Muhammad Risqi
Jurnal Fisika FLUX Vol 15, No 2 (2018): Jurnal Fisika Flux: Jurnal Ilmiah Fisika FMIPA Universitas Lambung Mangkurat
Publisher : Lambung Mangkurat University Press

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1375.496 KB) | DOI: 10.20527/flux.v15i2.4929

Abstract

The localization length and the Density Of State (DOS) of electron in a Poly(dA)-Poly(dT) DNA molecule at two temperatures have been calculated for several values of magnetic field. The calculation are carried out on a DNA molecule model that consists of adenine (A) and Thymine (T) nucleobases and sugar-phosphate backbone. The DNA molecule is modeled in tight binding Hamiltonian approachwith semi empirical Slater-Koster theory and Peierls phase factor for introducing the effect of temperature and magnetic field, respectively. In the model, electron is allowed to move between nucleobase sites, backbode sites, and between backbone site and nucleobase site. The localization length is obtained from the smallest Lyapunov exponent which is calculated using transfer matrix method along with Gram-Schmidtorthonormalization procedure. The DOS is calculated using Green’s function methodby taking into account the presence of metallic electrode at both ends of the DNA molecule. The localization length and the DOS change as a result of the change in electron wave phase due to magnetic field. The change is observed at both temperature used in the study, but the change at lower temperature is larger than the one at higher temperature. Thermally agitated vibrational twisting motion perturbs electron motion in the DNA molecule such that the influence of magnetic field on the localization length and the DOS of electron at higher temperature becomes smaller.
Studi probabilitas transmisi dan karakteristik IV pada molekul DNA G4 Refpo Rahman; Efta Yudiarsah
PendIPA Journal of Science Education Vol 4, No 2 (2020): MARCH - JUNE
Publisher : University of Bengkulu

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (450.028 KB) | DOI: 10.33369/pendipa.4.2.51-57

Abstract

[The study of transmission probability and IV chracteristics of a G4 molecule] In this era, there have been many theoretical and experimental studies conducted to enhance technological development. The development of technology continues to grow rapidly with electronic components that are getting smaller towards nano. Nanotechnology is becoming increasingly interesting because it can be created through DNA that is found in either the human body or other living things. This research was conducted to study DNA transport properties by calculating transmission probabilities and I-V characteristics. The DNA studied is DNA that has been modified consisting of 4 guanine bases arranged stacked to form a square called G4-DNA. G4-DNA is composed by having 32 base pairs and connected by electrodes at the end. The transport properties of G4-DNA were studied using the Hamiltonian tight binding approach. Transmission probability is calculated using the method of the Green Function Hamiltonian to determine the possibility of electrons flowing along the DNA pathway. This transmission probability is used in determining the I-V Characteristics based on the Landauer Büttiker formula. The results are obtained that the electron transport process along the G4-DNA molecule is an increase in current to high voltage. The effects of I-V characteristics are seen by affecting the twisting motion frequency up to 5.12 meV which is a significant increase in current. The results of this study can provide information about the characteristics of DNA that can be applied in the future in manufacture of nanotechnology device.