Andi Wijaya
Prodia Clinical Laboratory Jl. Cisangkuy No.2, Bandung

Published : 8 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 8 Documents
Search

A Closer Look at Cardioprotective Function of HDL: Revise the HDL – Cholesterol Hypothesis? Anna Meiliana; Andi Wijaya
The Indonesian Biomedical Journal Vol 6, No 1 (2014)
Publisher : The Prodia Education and Research Institute (PERI)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18585/inabj.v6i1.40

Abstract

BACKGROUND: The strong inverse association of plasma levels of high-density lipoprotein (HDL) cholesterol with coronary heart disease (CHD) found in human epidemiological studies led to the development of the ‘HDL cholesterol hypothesis’, which posits that intervention to raise HDL cholesterol will result in reduced risk of CHD. A number of recent developments have brought the potential protective role of HDL into question. Several clinical trials of agents that substantially raise HDL-C have been demonstrated to not reduce CHD event rates.CONTENT: For decades, HDL and HDL-cholesterol (HDL-C) levels were viewed as synonymous, and modulation of HDL-C levels by drug therapy held great promise for the prevention and treatment of cardiovascular disease. Nevertheless, recent failures of drugs that raise HDL-C to reduce cardiovascular risk and the now greater understanding of the complexity of HDL composition and biology have prompted researchers in the field to redefine HDL. As such, the focus of HDL has now started to shift away from a cholesterol-centric view toward HDL particle number, subclasses, and other alternative metrics of HDL. Many of the recently discovered functions of HDL are, in fact, not strictly conferred by its ability to promote cholesterol flux but by the other molecules it transports, including a diverse set of proteins, small RNAs, hormones, carotenoids, vitamins, and bioactive lipids. Based on HDL’s ability to interact with almost all cells and deliver fat-soluble cargo, HDL has the remarkable capacity to affect a wide variety of endocrine-like systems.SUMMARY: There is a significant need to redefine HDL and its benefit. HDL transports a diverse set of functional proteins, including many binding proteins. HDL transports and deliver vitamins, carotenoids, and other small molecules. Moreover, HDL transports hormones, steroids and bile acids, and can modulate multiple endocrine pathways. HDLs also transport and deliver microRNAs to recipient cells and control gene expression. Likewise, HDLs carry bioactive lipids and can activate signaling cascades and receptors that control endothelial apoptosis, migration, survival and activation. Many of HDL’s alternative noncholesterol cargo likely confer many of HDL’s alternative functions.KEYWORDS: HDL, ApoA1, RCT, ABCA1, ABCG1, miRNA, HDL lipidome, HDL proteome
Application of Umbilical Cord Blood Stem Cells in Regenerative Medicine Anna Meiliana; Andi Wijaya
The Indonesian Biomedical Journal Vol 6, No 3 (2014)
Publisher : The Prodia Education and Research Institute (PERI)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18585/inabj.v6i3.25

Abstract

BACKGROUND: Since the first umbilical cord blood (UCB) transplant, performed 25 years ago, UCB banks have been established worldwide for the collection and cryopreservation of UCB for autologous and allogeneic transplants.CONTENT: Much has been learned in a relatively short time on the properties of UCB hematopoietic progenitors and their clinical application. More interestingly, non-hematopoietic stem cells have been isolated from UCB. These cells can be grown and differentiated into various tissues including bone, cartilage, liver, pancreas, nerve, muscle and so on. The non-hematopoietic stem cells have an advantage over other sources of stem cells, such as embryonic stem cells or induced pluripotent stem cells, because their supply is unlimited, they can be used in autologous or allogeneic situations, they need minimal manipulation and they raise no ethical concerns. Future studies will test the potential of UCB cells for the treatment of several diseases including, among other possibilities, diabetes, arthritis, burns, neurological disorder and myocardial infarction.SUMMARY: In addition to hematopoietic stem cells, UCB contain a large number of non-hematopoietic stem cells. In the absence of ethical concern, the unlimited supply of UCB cells explains the increasing interest of using UCB for developing regenerative medicine.KEYWORDS: UCB, transplantation, UCB bank, HSC, MSC, CD34, CD133, VSEL
Mitochondrial Dysfunction in Stem Cell Aging Anna Meiliana; Nurrani Mustika Dewi; Andi Wijaya
The Indonesian Biomedical Journal Vol 7, No 1 (2015)
Publisher : The Prodia Education and Research Institute (PERI)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18585/inabj.v7i1.18

Abstract

BACKGROUND: Regardless of the precise underlying molecular mechanisms, the fundamental defining manifestation of aging is an overall decline in the functional capacity of various organs to maintain baseline tissue homeostasis and to respond adequately to physiological needs under stress. There is an increasingly urgent need for a more complete understanding of the molecular pathways and biological processes underlying aging and age-related disorders.CONTENT: Mitochondria constitute the most prominent source of adenosine triphosphate (ATP) and are implicated in multiple anabolic and catabolic circuitries. In addition, mitochondria coordinate cell-wide stress responses and control non-apoptotic cell death routines. The involvement of mitochondria in both vital and lethal processes is crucial for both embryonic and postembryonic development, as well as for the maintenance of adult tissue homeostasis. Age-associated telomere damage, diminution of telomere ‘capping’ function and associated p53 activation have emerged as prime instigators of a functional decline of tissue stem cells and of mitochondrial dysfunction that adversely affect renewal and bioenergetic support in diverse tissues. Constructing a model of how telomeres, stem cells and mitochondria interact with key molecules governing genome integrity, ‘stemness’ and metabolism provides a framework for how diverse factors contribute to aging and age-related disorders.SUMMARY: Cellular senescence defined as an irreversible proliferation arrest promotes age-related decline in mammalian tissue homeostasis. The aging of tissue-specific stem cell and progenitor cell compartments is believed to be central to the decline of tissue and organ integrity and function in the elderly. Taken into consideration that the overwhelming majority of intracellular reactive oxygen species (ROS) are of mitochondrial origin, it is reasonable to posit that the elevated ROS production might be caused by alteration in mitochondrial function during senescence. It is likely that mitochondria and stem cells will remain at the forefront of aging research also for the next decade.KEYWORDS: aging, stem cell, mitochondrial biogenesis, mitophagy, senescence, telomeres
Identification of Biomarkers for Prostate Cancer Anna Meiliana; Andi Wijaya
The Indonesian Biomedical Journal Vol 6, No 3 (2014)
Publisher : The Prodia Education and Research Institute (PERI)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18585/inabj.v6i3.26

Abstract

BACKGROUND: Prostate cancer (PCa) was the second most common type of cancer and the fifth leading cause of cancer-related death in men. The great challenge for physicians is being able to accurately predict PCa prognosis and treatment response in order to reduce PCa-specific mortality while avoiding overtreatment by identifying of when to intervene, and in which patients.CONTENT: Currently, PCa prognosis and treatment decision of PCa involved digital rectal examination, Prostate-Speciic Antigens (PSA), and subsequent biopsies for histopathological staging, known as Gleason score. However, each procedure has its shortcomings. Efforts to find a better clinically meaningful and non-invasive biomarkers still developed involving proteins, circulating tumor cells, nucleic acids, and the ‘omics' approaches.SUMMARY: Biomarkers for PCa will most likely be an assay employing multiple biomarkers in combination using protein and gene microarrays, containing markers that are differentially expressed in PCa.KEYWORDS: prostate cancer, PSA, biomarkers, nomograms, miRNA, proteomic, genomic, metabolomic
Brown and Beige Fat: Therapeutic Potential in Obesity Anna Meiliana; Andi Wijaya
The Indonesian Biomedical Journal Vol 6, No 2 (2014)
Publisher : The Prodia Education and Research Institute (PERI)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18585/inabj.v6i2.32

Abstract

BACKGROUND: The epidemic of obesity and type 2 diabetes presents a serious challenge to scientific and biomedical communities worldwide. There has been an upsurge of interest in the adipocyte coincident with the onset of the obesity epidemic and the realization that adipose tissue plays a major role in the regulation of metabolic function.CONTENT: Adipose tissue, best known for its role in fat storage, can also suppress weight gain and metabolic disease through the action of specialized, heat-producing adipocytes. Brown adipocytes are located in dedicated depots and express constitutively high levels of thermogenic genes, whereas inducible ‘brown-like’ adipocytes, also known as beige cells, develop in white fat in response to various activators. The activities of brown and beige fat cells reduce metabolic disease, including obesity, in mice and correlate with leanness in humans. Many genes and pathways that regulate brown and beige adipocyte biology have now been identified, providing a variety of promising therapeutic targets for metabolic disease.SUMMARY: The complexity of adipose tissue presents numerous challenges but also several opportunities for therapeutic intervention. There is persuasive evidence from animal models that enhancement of the function of brown adipocytes, beige adipocytes or both in humans could be very effective for treating type 2 diabetes and obesity. Moreover, there are now an extensive variety of factors and pathways that could potentially be targeted for therapeutic effects. In particular, the discoveries of circulating factors, such as irisin, fibroblast growth factor (FGF)21 and natriuretic peptides, that enhance brown and beige fat function in mice have garnered tremendous interest. Certainly, the next decade will see massive efforts to use beige and brown fat to ameliorate human metabolic disease.KEYWORDS: obesity, white adipose tissue, brown adipose tissue, beige adipose tissue, adipose organ, thermogenesis, energy expenditure
Potential Biomarkers for Diagnosis and Screening of Autism Spectrum Disorders Anna Meiliana; Andi Wijaya
The Indonesian Biomedical Journal Vol 6, No 3 (2014)
Publisher : The Prodia Education and Research Institute (PERI)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18585/inabj.v6i3.27

Abstract

BACKGROUND: Autism spectrum disorder (ASD) is a highly heritable neurodevelopmental condition, which is typically characterized by a triad of symptoms: impaired social communication, social reciprocity and repetitive stereotypic behavior. While the behavioral phenotype of ASD is well described, the search for reliable ‘autism biomarkers’ continues.CONTENT: Insulin growth factor (IGF) is essential for the myelination of developing fetal neurons; this is in addition to the well-known links between IGF, maternal inflammation, infection and autism supporting IGF as a potential marker. Combining IGF data with data regarding levels of the known markers, serotonin and anti-myelin basic protein, in order to calculate an autism index, could provide a new diagnostic method for at-risk neonates. Disruptions to multiple pathophysiological systems, including redox, folate, methylation, tryptophan metabolism, and mitochondrial metabolism, have been well documented in autistic patients. Maternal infection and inflammation have known links with autism. Autoimmunity has therefore been a well-studied area of autism research. The potential of using autoantibodies as novel biomarkers for autism, in addition to providing insights into the neurodevelopmental processes that lead to autism.SUMMARY: The six proposed causes of autism involve both metabolic and immunologic dysfunctions and include: increased oxidative stress; decreased methionine metabolism and trans-sulfuration: aberrant free and bound metal burden; gastrointestinal (GI) disturbances; immune/inflammation dysregulation; and autoimmune targeting. A newborn screening program for early-onset ASD should be capable of utilizing a combination of ASD-associated biomarkers representative of the six proposed causes of autism in order to identify newborns at risk. The biomarkers discussed in this article are useful to guide the selection, efficacy and sufficiency of biomedical interventions, which would likely include nutritional supplementation, dietary changes and specific medications for treating GI pathogens and reducing inflammation.KEYWORDS: ASD, autism, biomarkers, newborn screening, diagnosis
Hypertrophic Obesity and Subcutaneous Adipose Tissue Dysfunction Anna Meiliana; Andi Wijaya
The Indonesian Biomedical Journal Vol 6, No 2 (2014)
Publisher : The Prodia Education and Research Institute (PERI)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18585/inabj.v6i2.33

Abstract

BACKGROUND: Over the past 50 years, scientists have recognized that not all adipose tissue is alike, and that health risk is associated with the location as well as the amount of body fat. Different depots are sufficiently distinct with respect to fatty-acid storage and release as to probably play unique roles in human physiology. Whether fat redistribution causes metabolic disease or whether it is a marker of underlying processes that are primarily responsible is an open question.CONTENT: The limited expandability of the subcutaneous adipose tissue leads to inappropriate adipose cell expansion (hypertrophic obesity) with local inflammation and a dysregulated and insulin-resistant adipose tissue. The inability to store excess fat in the subcutaneous adipose tissue is a likely key mechanism for promoting ectopic fat accumulation in tissues and areas where fat can be stored, including the intra-abdominal and visceral areas, in the liver, epi/pericardial area, around vessels, in the myocardium, and in the skeletal muscles. Many studies have implicated ectopic fat accumulation and the associated lipotoxicity as the major determinant of the metabolic complications of obesity driving systemic insulin resistance, inflammation, hepatic glucose production, and dyslipidemia.SUMMARY: In summary, hypertrophic obesity is due to an impaired ability to recruit and differentiate available adipose precursor cells in the subcutaneous adipose tissue. Thus, the subcutaneous adipose tissue may be particular in its limited ability in certain individuals to undergo adipogenesis during weight increase. Inability to promote subcutaneous adipogenesis under periods of affluence would favor lipid overlow and ectopic fat accumulation with negative metabolic consequences.KEYWORDS: obesity, adipogenesis, subcutaneous adipose tissue, visceral adipose tissue, adipocyte dysfunction
MicroRNAs in Lipid Metabolism and Atherosclerosis Anna Meiliana; Andi Wijaya
The Indonesian Biomedical Journal Vol 6, No 1 (2014)
Publisher : The Prodia Education and Research Institute (PERI)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18585/inabj.v6i1.39

Abstract

BACKGROUND: MicroRNAs (miRNA) are mediators of post-transcriptional gene expression that likely regulate most biological pathways and networks. The study of miRNAs is a rapidly emerging field; recent findings have revealed a significant role for miRNAs in atherosclerosis and lipoprotein metabolism.CONTENT: Results from recent studies demonstrated a role for miRNAs in endothelial integrity, macrophage inflammatory response to oxidized low-density lipoprotein, vascular smooth muscle cell proliferation and cholesterol synthesis. These mechanisms are all vital to the initiation and proliferation of atherosclerosis and cardiovascular disease. The importance of miRNAs has recently been recognized in cardiovascular sciences and miRNAs will likely become an integral part of our fundamental comprehension of atherosclerosis and lipoprotein metabolism. The extensive impact of miRNA mediated gene regulation and the relative ease of in vivo applicable modifications highlight the enormous potential of miRNA-based therapeutics in cardiovascular diseases.SUMMARY: miRNA studies in the field of lipid metabolism and atherosclerosis are in their infancy, and thus there is tremendous opportunity for discovery in this understudied area. The ability to target miRNAs in vivo through delivery of miRNA-mimics to enhance miRNA function, or antimiRNAs which inhibit miRNAs, has opened new avenues for the development of therapeutics for dyslipidemias and atherosclerosis, offers a unique approach to treating disease by modulating entire biological pathways. These exciting findings support the development of miRNA antagonists as potential therapeutics for the treatment of dyslipidaemia, atherosclerosis and related metabolic diseases.KEYWORDS: atherosclerosis, lipoprotein, HDL, miRNA