Herma Dina Setiabudi
Faculty of Chemical and Natural Resources Engineering, Universiti Malaysia Pahang, 26300 Gambang, Kuantan, Pahang|Malaysia Centre of Excellence for Advanced Research in Fluid Flow, Universiti Malaysia Pahang, 26300 Gambang, Kuantan, Pahang

Published : 4 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 4 Documents
Search

Egg-shell Treated Oil Palm Fronds (EG-OPF) as Low-Cost Adsorbent for Methylene Blue Removal Rosalyza Hasan; Nur Aida Farihin Ahliyasah; Chi Cheng Chong; Rohayu Jusoh; Herma Dina Setiabudi
Bulletin of Chemical Reaction Engineering & Catalysis 2019: BCREC Volume 14 Issue 1 Year 2019 (April 2019)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (430.122 KB) | DOI: 10.9767/bcrec.14.1.3322.158-164

Abstract

A new adsorbent (egg-shell treated oil palm fronds (EG-OPF)) prepared from wastes was evaluated for methylene blue (MB) removal. Optimization among three significant variables (initial concentration (X1), initial pH (X2), and adsorbent dosage (X3)) were executed using response surface methodology (RSM). The most excellent performance was marked at X1 = 291.7 mg/L, X2 = pH 5, and X3 = 1.82 g/L, with MB removal of 80.26 %. The kinetic study was fitted perfectly with the pseudo-second-order model (R2 > 0.990), indicating the chemisorption process. The isotherm study was found to follow the Langmuir isotherm model (R2 = 0.999), with maximal adsorption magnitude of 714.3 mg/g, implying the monolayer adsorption on a homogenous adsorbent surface. The reusability study affirmed the feasibility of EG-OPF in MB removal, credited to its excellent performance during reusability studies. The present study successfully discovered a new low-cost adsorbent (EG-OPF) for MB removal. 
Synthesis of KCC-1 Using Rice Husk Ash for Pb Removal from Aqueous Solution and Petrochemical Wastewater Rosalyza Hasan; Chi Cheng Chong; Herma Dina Setiabudi
Bulletin of Chemical Reaction Engineering & Catalysis 2019: BCREC Volume 14 Issue 1 Year 2019 (April 2019)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (3961.282 KB) | DOI: 10.9767/bcrec.14.1.3619.196-204

Abstract

A silica-rich rice husk ash (RHA, 95.44% SiO2) was used as a silica precursor in the synthesis of KCC-1 for Pb(II) removal. The extraction of silica was carried out under several extraction methods (alkali fusion (AF), reflux (RF) and microwave heating (MW)) and extraction parameters (NaOH/RHA mass ratio, fusion temperature and H2O/NaOH-fused RHA mass ratio). The highest silica content was obtained using AF method at extraction conditions of NaOH/RHA mass ratio = 2, fusion temperature = 550 ºC, and H2O/NaOH-fused RHA mass ratio = 4, with silica concentration of 85,490 ppm. TEM, FTIR, and BET analyses revealed the synthesized KCC-1 has fibrous morphology with surface area of 220 m2/g. The synthesized KCC-1 showed good performance in removal of Pb(II) from aqueous solution (74%) and petrochemical wastewater (70%). The analyses of petrochemical wastewater revealed that the adsorption process using synthesized KCC-1 effectively decreased the concentration of COD (489 mg/L to 106 mg/L), BOD (56 mg/L to 34 mg/L) and Pb(II) (22.8 mg/L to 6.71 mg/L). This study affirmed that KCC-1 was successfully synthesized using RHA as silica precursor and applied as an efficient adsorbent for Pb(II) removal. 
Egg-shell Treated Oil Palm Fronds (EG-OPF) as Low-Cost Adsorbent for Methylene Blue Removal Rosalyza Hasan; Nur Aida Farihin Ahliyasah; Chi Cheng Chong; Rohayu Jusoh; Herma Dina Setiabudi
Bulletin of Chemical Reaction Engineering & Catalysis 2019: BCREC Volume 14 Issue 1 Year 2019 (April 2019)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.14.1.3322.158-164

Abstract

A new adsorbent (egg-shell treated oil palm fronds (EG-OPF)) prepared from wastes was evaluated for methylene blue (MB) removal. Optimization among three significant variables (initial concentration (X1), initial pH (X2), and adsorbent dosage (X3)) were executed using response surface methodology (RSM). The most excellent performance was marked at X1 = 291.7 mg/L, X2 = pH 5, and X3 = 1.82 g/L, with MB removal of 80.26 %. The kinetic study was fitted perfectly with the pseudo-second-order model (R2 > 0.990), indicating the chemisorption process. The isotherm study was found to follow the Langmuir isotherm model (R2 = 0.999), with maximal adsorption magnitude of 714.3 mg/g, implying the monolayer adsorption on a homogenous adsorbent surface. The reusability study affirmed the feasibility of EG-OPF in MB removal, credited to its excellent performance during reusability studies. The present study successfully discovered a new low-cost adsorbent (EG-OPF) for MB removal. 
Synthesis of KCC-1 Using Rice Husk Ash for Pb Removal from Aqueous Solution and Petrochemical Wastewater Rosalyza Hasan; Chi Cheng Chong; Herma Dina Setiabudi
Bulletin of Chemical Reaction Engineering & Catalysis 2019: BCREC Volume 14 Issue 1 Year 2019 (April 2019)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.14.1.3619.196-204

Abstract

A silica-rich rice husk ash (RHA, 95.44% SiO2) was used as a silica precursor in the synthesis of KCC-1 for Pb(II) removal. The extraction of silica was carried out under several extraction methods (alkali fusion (AF), reflux (RF) and microwave heating (MW)) and extraction parameters (NaOH/RHA mass ratio, fusion temperature and H2O/NaOH-fused RHA mass ratio). The highest silica content was obtained using AF method at extraction conditions of NaOH/RHA mass ratio = 2, fusion temperature = 550 ºC, and H2O/NaOH-fused RHA mass ratio = 4, with silica concentration of 85,490 ppm. TEM, FTIR, and BET analyses revealed the synthesized KCC-1 has fibrous morphology with surface area of 220 m2/g. The synthesized KCC-1 showed good performance in removal of Pb(II) from aqueous solution (74%) and petrochemical wastewater (70%). The analyses of petrochemical wastewater revealed that the adsorption process using synthesized KCC-1 effectively decreased the concentration of COD (489 mg/L to 106 mg/L), BOD (56 mg/L to 34 mg/L) and Pb(II) (22.8 mg/L to 6.71 mg/L). This study affirmed that KCC-1 was successfully synthesized using RHA as silica precursor and applied as an efficient adsorbent for Pb(II) removal.