Peng Fei Li
College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266061

Published : 8 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 8 Documents
Search

Synthesis, Structure, and Catalytic Activity of A New Mn(II) Complex with 1,4-Phenylenediacetic Acid and 1,10-Phenanthroline Li Hua Wang; Peng Fei Li
Bulletin of Chemical Reaction Engineering & Catalysis 2018: BCREC Volume 13 Issue 1 Year 2018 (April 2018)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (637.471 KB) | DOI: 10.9767/bcrec.13.1.975.1-6

Abstract

A new Mn(II) complex material has been synthesized by one-pot reaction of Mn(CH3COO)2·4H2O, 1,4-phenylenediacetic (H2L), 1,10-phenanthroline (phen), and NaOH in water/ethanol (v:v = 1:1) solution. The structure of Mn(II) complex was determined by elemental analysis, FTIR, and X-ray single-crystal diffraction analysis. The results reveal that Mn(II) complex was constructed by a monodentate 1,4-phenylenediacetate ligand, two phen ligands, a coordinated water molecule, 0.5 uncoordinated 1,4-phenylenediacetate ligand and six uncoordinated water molecules. The complex molecules form 1D chain structure by the π-π interaction of phen molecules. The catalytic activity of Mn(II) complex for coupling of benzaldehyde, phenylacetylene and piperidine in 1,4-dioxane has also been  investigated  and the maximum yield of propargylamine is up to 72.2 % after 12 h at 120 oC. 
Synthesis, Structural Characterization, and Catalytic Property of A Zn(II) Complex with 5-Bromosalicylaldehyde Ligand Xi Shi Tai; Peng Fei Li; Xin Wang; Li Li Liu
Bulletin of Chemical Reaction Engineering & Catalysis 2017: BCREC Volume 12 Issue 3 Year 2017 (December 2017)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (499.343 KB) | DOI: 10.9767/bcrec.12.3.876.364-369

Abstract

The study on catalytic activity of complex materials has been one of the hot spots in coordination  chemistry. In order to extensively study the catalytic activity of complexes, a new six-coordination Zn(II) complex material, [ZnL2(H2O)2] (C1) (HL = 5-bromosalicylaldehyde), has been prepared with 5-bromosalicylaldehyde, NaOH, and Zn(CH3COO)2·2H2O as raw materials. The structure of C1 was determined by elemental analysis, IR spectra, and single crystal X-ray diffraction. The Zn(II) complex shows a moderate catalytic activity for A3 coupling reaction of benzaldehyde, piperidine, and phenylacetylene with the benzaldehyde conversion reached 54.6 %. Furthermore, the Zn(II) complex catalyst exhibited 54.8 %, 53.8 %, and 54.4 % conversions of benzaldehyde in the second, third, and fourth cycles, respectively.  In addition, the Zn(II) complex features a selectivity of 100 % to the     product of propargylamine for the A3 coupling reaction. 
Crystal Structure and Catalytic Activity of A Novel Cd(II) Coordination Polymer Formed by Dicarboxylic Ligand Zhi Xiang Ji; Peng Fei Li
Bulletin of Chemical Reaction Engineering & Catalysis 2018: BCREC Volume 13 Issue 2 Year 2018 (August 2018)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.13.2.1178.220-226

Abstract

A new Cd(II) coordination polymer, {[Cd3(L)2(DMF)2(H2O)2]·H2O}n (H2L = 1,3-bisbenzyl-2-imidazolidine-4,5-dicarboxylic acid) was synthesized by one-pot synthesis method from 1,3-bisbenzyl-2-imidazolidine-4,5-dicarboxylic acid, NaOH, DMF, and Cd(NO3)2·4H2O. Its structure was determined by elemental analysis and single crystal X-ray diffraction. Structural analysis shows that three Cd(II) ions are all six-coordinated with four oxygen atoms of four 1,3-bisbenzyl-2-imidazolidine-4,5-dicarboxylate ligands and two O atoms from two DMF molecules (Cd1) or two oxygen atoms of two coordinated H2O molecules (Cd2 and Cd3) to form an octahedral coordination geometry. The Cd(II) coordination polymer displays a 1D chained structure by the bridging carboxylate groups from 1,3-bisbenzyl-2-imidazolidine-4,5-dicarboxylate ligands. The conversion of benzaldehyde is 90.9%, which is 40~50% higher than those of the other three aldehydes (4-methylbenzaldehyde, p-methoxybenzaldehyde and 3-chlorobenzaldehyde), so the Cd(II) coordination polymer catalyst shows better catalytic activity for the coupling reaction of benzaldehyde, phenylacetylene, and piperidine than the other three aldehydes. 
Preparation, Characterization, and Catalytic Property of a Cu(II) Complex with 2-Carboxybenzaldehyde-p-Toluenesulfonyl Hydrazone Ligand Xi Shi Tai; Peng Fei Li; Li Li Liu
Bulletin of Chemical Reaction Engineering & Catalysis 2018: BCREC Volume 13 Issue 1 Year 2018 (April 2018)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (634.226 KB) | DOI: 10.9767/bcrec.13.1.1012.7-13

Abstract

Metal-organic complex hybrid materials constructed from carboxylate ligands and hydrazone ligands have exhibited potential application in many fields. In order to enrich the applications of the metai-organic complex materials, a new hydrazone ligand contains carboxylate group, 2-carboxybenzaldehyde-p-toluenesulfonyl hydrazone (L1), and its Cu(II) complex (C2), have been prepared. The structure of L1 was determined by elemental analysis, IR spectra and single crystal X-ray diffraction, and the composition of Cu(II) complex (C2) has also been determined by elemental analysis, IR and UV spectra. The catalytic activity for A3 coupling reaction of benzaldehyde, piperidine, and phenylacetylene has been investigated. The results show that Cu(II) complex displays a 100 % selectivity to the product of propargylamine during A3 coupling reaction and benzaldehyde conversions were 95.3, 94.2, and 93.4 % at 120 °C for 12 h in the first, second, and third reaction cycles, respectively.  
Crystal Structure and Catalytic Activity of A Novel Cd(II) Coordination Polymer Formed by Dicarboxylic Ligand Zhi Xiang Ji; Peng Fei Li
Bulletin of Chemical Reaction Engineering & Catalysis 2018: BCREC Volume 13 Issue 2 Year 2018 (August 2018)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.13.2.1178.220-226

Abstract

A new Cd(II) coordination polymer, {[Cd3(L)2(DMF)2(H2O)2]·H2O}n (H2L = 1,3-bisbenzyl-2-imidazolidine-4,5-dicarboxylic acid) was synthesized by one-pot synthesis method from 1,3-bisbenzyl-2-imidazolidine-4,5-dicarboxylic acid, NaOH, DMF, and Cd(NO3)2·4H2O. Its structure was determined by elemental analysis and single crystal X-ray diffraction. Structural analysis shows that three Cd(II) ions are all six-coordinated with four oxygen atoms of four 1,3-bisbenzyl-2-imidazolidine-4,5-dicarboxylate ligands and two O atoms from two DMF molecules (Cd1) or two oxygen atoms of two coordinated H2O molecules (Cd2 and Cd3) to form an octahedral coordination geometry. The Cd(II) coordination polymer displays a 1D chained structure by the bridging carboxylate groups from 1,3-bisbenzyl-2-imidazolidine-4,5-dicarboxylate ligands. The conversion of benzaldehyde is 90.9%, which is 40~50% higher than those of the other three aldehydes (4-methylbenzaldehyde, p-methoxybenzaldehyde and 3-chlorobenzaldehyde), so the Cd(II) coordination polymer catalyst shows better catalytic activity for the coupling reaction of benzaldehyde, phenylacetylene, and piperidine than the other three aldehydes. 
Synthesis, Structure, and Catalytic Activity of A New Mn(II) Complex with 1,4-Phenylenediacetic Acid and 1,10-Phenanthroline Li Hua Wang; Peng Fei Li
Bulletin of Chemical Reaction Engineering & Catalysis 2018: BCREC Volume 13 Issue 1 Year 2018 (April 2018)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.13.1.975.1-6

Abstract

A new Mn(II) complex material has been synthesized by one-pot reaction of Mn(CH3COO)2·4H2O, 1,4-phenylenediacetic (H2L), 1,10-phenanthroline (phen), and NaOH in water/ethanol (v:v = 1:1) solution. The structure of Mn(II) complex was determined by elemental analysis, FTIR, and X-ray single-crystal diffraction analysis. The results reveal that Mn(II) complex was constructed by a monodentate 1,4-phenylenediacetate ligand, two phen ligands, a coordinated water molecule, 0.5 uncoordinated 1,4-phenylenediacetate ligand and six uncoordinated water molecules. The complex molecules form 1D chain structure by the π-π interaction of phen molecules. The catalytic activity of Mn(II) complex for coupling of benzaldehyde, phenylacetylene and piperidine in 1,4-dioxane has also been  investigated  and the maximum yield of propargylamine is up to 72.2 % after 12 h at 120 oC. 
Preparation, Characterization, and Catalytic Property of a Cu(II) Complex with 2-Carboxybenzaldehyde-p-Toluenesulfonyl Hydrazone Ligand Xi Shi Tai; Peng Fei Li; Li Li Liu
Bulletin of Chemical Reaction Engineering & Catalysis 2018: BCREC Volume 13 Issue 1 Year 2018 (April 2018)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.13.1.1012.7-13

Abstract

Metal-organic complex hybrid materials constructed from carboxylate ligands and hydrazone ligands have exhibited potential application in many fields. In order to enrich the applications of the metai-organic complex materials, a new hydrazone ligand contains carboxylate group, 2-carboxybenzaldehyde-p-toluenesulfonyl hydrazone (L1), and its Cu(II) complex (C2), have been prepared. The structure of L1 was determined by elemental analysis, IR spectra and single crystal X-ray diffraction, and the composition of Cu(II) complex (C2) has also been determined by elemental analysis, IR and UV spectra. The catalytic activity for A3 coupling reaction of benzaldehyde, piperidine, and phenylacetylene has been investigated. The results show that Cu(II) complex displays a 100 % selectivity to the product of propargylamine during A3 coupling reaction and benzaldehyde conversions were 95.3, 94.2, and 93.4 % at 120 °C for 12 h in the first, second, and third reaction cycles, respectively.  
Synthesis, Structural Characterization, and Catalytic Property of A Zn(II) Complex with 5-Bromosalicylaldehyde Ligand Xi Shi Tai; Peng Fei Li; Xin Wang; Li Li Liu
Bulletin of Chemical Reaction Engineering & Catalysis 2017: BCREC Volume 12 Issue 3 Year 2017 (December 2017)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.12.3.876.364-369

Abstract

The study on catalytic activity of complex materials has been one of the hot spots in coordination  chemistry. In order to extensively study the catalytic activity of complexes, a new six-coordination Zn(II) complex material, [ZnL2(H2O)2] (C1) (HL = 5-bromosalicylaldehyde), has been prepared with 5-bromosalicylaldehyde, NaOH, and Zn(CH3COO)2·2H2O as raw materials. The structure of C1 was determined by elemental analysis, IR spectra, and single crystal X-ray diffraction. The Zn(II) complex shows a moderate catalytic activity for A3 coupling reaction of benzaldehyde, piperidine, and phenylacetylene with the benzaldehyde conversion reached 54.6 %. Furthermore, the Zn(II) complex catalyst exhibited 54.8 %, 53.8 %, and 54.4 % conversions of benzaldehyde in the second, third, and fourth cycles, respectively.  In addition, the Zn(II) complex features a selectivity of 100 % to the     product of propargylamine for the A3 coupling reaction.