S. Chadha
Department of Chemical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Oxidation Kinetics of Propane-Air Mixture over NiCo2O4 Catalyst Emitted from LPG Vehicles Suverna Trivedi; Ram Prasad; S. Chadha
Bulletin of Chemical Reaction Engineering & Catalysis 2017: BCREC Volume 12 Issue 2 Year 2017 (August 2017)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (372.05 KB) | DOI: 10.9767/bcrec.12.2.798.191-196

Abstract

This paper describes the kinetics of catalytic air oxidation of propane. The kinetics data were collected in a plug flow tubular reactor. The experiments were performed over the NiCo2O4 catalyst prepared by co-precipitation method followed by calcination at 400 oC. The kinetic data were collected under the following conditions: 200 mg of catalyst, 2.5 % of propane in air, total flow rate of 60 mL/min, and temperature ranges of 130-170 oC. The data were fitted to the power law rate equation. The activation    energy and frequency factor were found to be 59.3 kJ/g mol and 2.9×108 (mol)0.47.L0.53/g cat.h, respectively. 
Oxidation Kinetics of Propane-Air Mixture over NiCo2O4 Catalyst Emitted from LPG Vehicles Suverna Trivedi; Ram Prasad; S. Chadha
Bulletin of Chemical Reaction Engineering & Catalysis 2017: BCREC Volume 12 Issue 2 Year 2017 (August 2017)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.12.2.798.191-196

Abstract

This paper describes the kinetics of catalytic air oxidation of propane. The kinetics data were collected in a plug flow tubular reactor. The experiments were performed over the NiCo2O4 catalyst prepared by co-precipitation method followed by calcination at 400 oC. The kinetic data were collected under the following conditions: 200 mg of catalyst, 2.5 % of propane in air, total flow rate of 60 mL/min, and temperature ranges of 130-170 oC. The data were fitted to the power law rate equation. The activation    energy and frequency factor were found to be 59.3 kJ/g mol and 2.9×108 (mol)0.47.L0.53/g cat.h, respectively.