p-Index From 2019 - 2024
0.444
P-Index
This Author published in this journals
All Journal Automotive Experiences
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Engine Performances of Lean Iso-Octane Mixtures in a Glow Plug Heated Sub-Chamber SI Engine Willyanto Anggono; Soen Peter Stanley; Ferdinand Ronaldo; Gabriel J. Gotama; Bin Guo; Emir Yilmaz; Mitsuhisa Ichiyanagi; Takashi Suzuki
Automotive Experiences Vol 5 No 1 (2022)
Publisher : Automotive Laboratory of Universitas Muhammadiyah Magelang in collaboration with Association of Indonesian Vocational Educators (AIVE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (666.785 KB) | DOI: 10.31603/ae.5118

Abstract

Due to the difficulty to directly study ammonia, the present work investigated the engine performance of lean iso-octane/air mixture to approximate ammonia combustion behaviour. The study was conducted using a single cylinder modified diesel engine that features a spark plug and glow plug in the sub-chamber. The investigations varied the engine speeds (1000 and 1500 RPM), glow plug voltages (6 and 10 volts), excess air ratios (1.4 to 1.8), and ignition timings (-2 to -5 °BTDC). The results suggested improved engine performances with a lower excess ratio and higher glow plug voltage due to more complete and stable combustion. By increasing the engine speed, the lean burn limit was extended and improved the engine performances. Because of the sub-chamber feature, delaying the ignition timing improved the engine performances. A larger excess air ratio was found to increase the sensitivity of the engine performances with the ignition timing. The brake mean effective pressure for all conditions has a coefficient of variation of less than 7%, indicating stable combustion. The results suggested that the current setup can be used to investigate ammonia blended fuel and direct ammonia combustion in future works.
Combustion Analysis of Ammonia/Oxygen Mixtures at Various Equivalence Ratio Conditions Using a Constant Volume Combustor with Sub-chamber Bin Guo; Mitsuhisa Ichiyanagi; Makoto Horie; Keita Aihara; Takuma Ohashi; Abiyasu Zhang; Takashi Suzuki
Automotive Experiences Vol 4 No 3 (2021)
Publisher : Automotive Laboratory of Universitas Muhammadiyah Magelang in collaboration with Association of Indonesian Vocational Educators (AIVE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (879.095 KB) | DOI: 10.31603/ae.6132

Abstract

The greenhouse effect issue is becoming more serious, and renewable energy is playing an increasingly important role. Among all alternative fuels, ammonia has been attracting attention as a carbon-free energy carrier for hydrogen, because of its large energy density per volume and easy storage and transportation. On the other hand, ammonia has a low combustion speed, which is an important issue for the use of ammonia as a vehicle fuel. To increase the mean flame speed of ammonia, the present study used the burned gas ejected from the sub-chamber for the compression of the mixture in the main chamber and the promotion of its HCCI combustion. Thus, the constant volume combustor with sub-chamber was used to realize the above combustion and to study the combustion characteristics of ammonia and oxygen mixture. In the experiments, initial pressure and initial temperature were unchanged and only the equivalence ratio was changed. The combustion pressure data were recorded and analyzed. As the result, the maximum combustion pressure (2.5 MPa) was obtained when the equivalence ratio was 0.4. The combustion speed was the fastest when the equivalence ratio was 0.6, and the mean flame speed was about 57.5 m/s.