Claim Missing Document
Check
Articles

Found 7 Documents
Search

LITAO3 CHARACTERIZATION OF RUBIDIUM ON TEMPERATURE VARIATIONS Agus Ismangil; Teguh Puja Negara
Journal of Science Innovare Vol 1, No 02 (2018): Journal of Science Innovare, September 2018
Publisher : Universitas Pakuan

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (465.841 KB) | DOI: 10.33751/jsi.v1i02.1005

Abstract

One of the studies that recently attracted the attention of physicists is research on ferroelectric material because this material is very promising for the development of new generation devices in connection with the unique properties it has. Ferroelectric materials, especially those based on a mixture of lithium tantalite (LiTaO3), are expected to be applied to the infrared sensor. Lithium tantalate (LiTaO3) is a ferroelectric material that is unique in terms of pyroelectric and piezoelectric properties that are integrated with good mechanical and chemical stability. Therefore LiTaO3 is often used for several applications such as electro-optical modulators and pyroelectric detectors. LiTaO3 is a non-hygroscopic crystal, colorless, soluble in water, has a high transmission rate and does not easily damage its optical properties. LiTaO3 is a material that has a high dielectric constant and a high load storage capacity. This research has succeeded in determining the band gap energy of the LiTaO3 film in the rubidium chamber obtained in the range of values 2.02-2.98 eV as shown in figure 4. The LiTaO3 film after the annealing process at a temperature of 650 oC, has the highest band gap energy of 2.98 eV. Large energy is needed on the electrons to be excited from the valence band to the conduction band. Whereas in the LiTaO3 film after an annealing process of 800 oC, the band gap energy obtained is 2.02 eV. This makes it easier for electrons to be excited from the valence band to the conduction band because the energy needed is not too large.
SIMULASI PERAMBATAN GELOMBANG ELEKTROMAGNETIK PADA KRISTAL FOTONIK 2D MENGGUNAKAN METODE FINITE DIFFERENCE FREQUENCY DOMAIN Adly Maulana Suherman; Teguh Puja Negara; Hendradi Hardhienata; Husin Alatas
KOMPUTASI Vol 16, No 2 (2019): Komputasi: Jurnal Ilmiah Ilmu Komputer dan Matematika
Publisher : Ilmu Komputer, FMIPA, Universitas Pakuan

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (453.567 KB) | DOI: 10.33751/komputasi.v16i2.1619

Abstract

Numerical simulations on two-dimensional photonic crystals with defects were analyzed using the Finite Difference Frequency Domain (FDFD). This approach consists of Maxwell's formulation that uses Central Finite Difference to place fields and materials at discrete points of the Yee grid, so that the matrix wave equation is obtained in the form of column vectors. Absorbent boundary conditions use Perfectly Matched Layer (PML) with fictitious magnetic conductivity to shed incoming waves at the edge of the domain calculation. Photonic crystals can be assumed to be a periodic lattice of dielectric material that produces the phenomenon of photonic band gap (PBG). The results of FDFD simulations are compared with the literature with a difference of 0.056. This small difference value means that this method is good enough to analyze PBG phenomena. For point defects and the accumulation of electromagnetic waves, linear defects are investigated and analyzed with spectral responses. Insertion of defects in photonic crystals will produce a photonic pass band (PPB). The simulation results show that PPB depends on the angle of arrival vector, material permittivity, and width of the defect structure.
IMPLEMENTASI ALGORITMA TANDA TANGAN DIGITAL BERBASIS KRIPTOGRAFI KURVA ELIPTIK DIFFIE-HELLMAN Asep Saepulrohman; Teguh Puja Negara
KOMPUTASI Vol 18, No 1 (2021): Komputasi: Jurnal Ilmiah Ilmu Komputer dan Matematika
Publisher : Ilmu Komputer, FMIPA, Universitas Pakuan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33751/komputasi.v18i1.2569

Abstract

In data communication systems, digital signatures are a form of electronic signature security services based on the Elliptic Curve Digital Signature Algorithm (ECDSA) which are considered resistant to certain types of attacks. Attacks on digital signature schemes aim to fake a signature or are called forgery which is said to be successful if the key pair and signature generated by the attacker are accepted by the verifier. Mathematical schemes used to prove the authenticity of messages or digital documents or guarantees that the data and information actually come from the correct source. ECDSA-based digital signatures rely on discrete logarithmic problems as the basis for mathematical calculations. Q = kP where Q and P are the points of the elliptic curve in the finite field  or  and k is a positive integer number. The hash function generated from the algorithm process is then encoded (encrypted) with an asymmetric key cryptographic algorithm. In this work use p = 149 to encrypt plain text by converting the original message using dots on a curve with the help of Python programs.  
Film Tipis LiTaO3 Didoping Rubidium Menggunakan Metode CSD Untuk Aplikasi Sensor Infra Merah Agus Ismangil; Teguh Puja Negara; Agung Prajuhana; Muhammad Iqbal
Prosiding Seminar Nasional Sains Teknologi dan Inovasi Indonesia (SENASTINDO) Vol 1 (2019): Prosiding Seminar Nasional Sains Teknologi dan Inovasi Indonesia (Senastindo)
Publisher : Akademi Angkatan Udara

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (449.005 KB)

Abstract

Litium tantalat memiliki formula kimia LiTaO3, dengan substrat Si Tipe –P (100) dengan metode chemical solution deposition dan spin coating dengan kecepatan 3000 rpm selama 30 seconds. LiTaO3 memiliki konsentrasi 2.5M dan suhu annealing 800 °C. Film tipis LiTaO3 dikarakterisasi dengan ocean optic spectroscopy. Hasil dari karakterisasi spektroskopi film lithium tantalat murni pada suhu annealing 800 oC menghasilkan panjang gelombang 935 nm, Sedangkan film tipis litium tantalat yang didoping rubidium terlihat puncak absorbansi tertinggi pada suhu annealing 800oC menghasilkan panjang gelombang 934 nm, puncak absorbansi tertinggi pada film lithium tantalat pada suhu annealing 800 oC dengan kata lain film LiTaO3 banyak menyerap energi foton dari cahaya yang mengenainya serta film tipis litium tantalat menjadi cikal bakal sensor infra merah.
Pengaruh Doping LiTaO3 Menggunakan Metode Chemical Solution Deposition Agus Ismangil; Teguh Puja Negara; Muhammad Iqbal
Sainsmat : Jurnal Ilmiah Ilmu Pengetahuan Alam Vol 8, No 1 (2019): Maret
Publisher : Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Makassar

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (891.474 KB) | DOI: 10.35580/sainsmat81106912019

Abstract

Telah ditumbuhkan litium tantalite LiTaO3 dengan substrat Si Tipe –P (100) dengan metode chemical solution deposition dan spin coating dengan kecepatan 3000 rpm selama 30 seconds. hasil yang didapat absorbansi maksimum dari film lithium tantalat didoping niobium terjadi pada daerah infra merah yaitu pada puncak panjang gelombang 780 nm perbedaan dari dua puncak absorbansi antara litium tantalat murni dengan litium tantalat didoping niobium pada suhu 800 oC terjadi pergeseran puncak absorbansi dengan nilai panjang gelombang dari 935 nm menjadi 780 nm. dengan kata lain film LiTaO3 banyak menyerap energi foton dari cahaya yang mengenainya dan film tipis litium tantalat didoping niobium cikal bakal menjadi sensor infra merah.
Pengaruh Doping LiTaO3 Menggunakan Metode Chemical Solution Deposition Agus Ismangil; Teguh Puja Negara; Muhammad Iqbal
Sainsmat : Jurnal Ilmiah Ilmu Pengetahuan Alam Vol 8, No 1 (2019): Maret
Publisher : Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Makassar

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35580/sainsmat81106912019

Abstract

Telah ditumbuhkan litium tantalite LiTaO3 dengan substrat Si Tipe –P (100) dengan metode chemical solution deposition dan spin coating dengan kecepatan 3000 rpm selama 30 seconds. hasil yang didapat absorbansi maksimum dari film lithium tantalat didoping niobium terjadi pada daerah infra merah yaitu pada puncak panjang gelombang 780 nm perbedaan dari dua puncak absorbansi antara litium tantalat murni dengan litium tantalat didoping niobium pada suhu 800 oC terjadi pergeseran puncak absorbansi dengan nilai panjang gelombang dari 935 nm menjadi 780 nm. dengan kata lain film LiTaO3 banyak menyerap energi foton dari cahaya yang mengenainya dan film tipis litium tantalat didoping niobium cikal bakal menjadi sensor infra merah.
LITAO3 CHARACTERIZATION OF RUBIDIUM ON TEMPERATURE VARIATIONS Agus Ismangil; Teguh Puja Negara
Journal of Science Innovare Vol 1, No 2 (2018): Journal of Science Innovare, Volume 01 Number 02 2018
Publisher : Universitas Pakuan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33751/jsi.v1i02.1005

Abstract

One of the studies that recently attracted the attention of physicists is research on ferroelectric material because this material is very promising for the development of new generation devices in connection with the unique properties it has. Ferroelectric materials, especially those based on a mixture of lithium tantalite (LiTaO3), are expected to be applied to the infrared sensor. Lithium tantalate (LiTaO3) is a ferroelectric material that is unique in terms of pyroelectric and piezoelectric properties that are integrated with good mechanical and chemical stability. Therefore LiTaO3 is often used for several applications such as electro-optical modulators and pyroelectric detectors. LiTaO3 is a non-hygroscopic crystal, colorless, soluble in water, has a high transmission rate and does not easily damage its optical properties. LiTaO3 is a material that has a high dielectric constant and a high load storage capacity. This research has succeeded in determining the band gap energy of the LiTaO3 film in the rubidium chamber obtained in the range of values 2.02-2.98 eV as shown in figure 4. The LiTaO3 film after the annealing process at a temperature of 650 oC, has the highest band gap energy of 2.98 eV. Large energy is needed on the electrons to be excited from the valence band to the conduction band. Whereas in the LiTaO3 film after an annealing process of 800 oC, the band gap energy obtained is 2.02 eV. This makes it easier for electrons to be excited from the valence band to the conduction band because the energy needed is not too large.